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Natural and externally-forced excitation of internal gravity waves in a uni-

formly stratified fluid have been thoroughly investigated by means of highly

resolved large eddy simulations. The first part of the thesis focuses on the gen-

eration of high frequency internal gravity waves by the turbulent wake of a

towed sphere in a uniformly stratified fluid. We have used continuous wavelet

transforms to quantify relevant wavelength and frequencies and their spatial

and temporal dependence in the near field of the wake. The dependence on

Reynolds number and Froude number of the internal wave field wavelengths,

frequencies and isopycnal displacements are reported for the first time. The ini-

tial wavelengths and decay rates show a dependence on both parameters that

can not be explained on the basis of impulsive mass source models. The results

also clearly identify Reynolds number as the main driver for the observed se-

lection of a narrow range of wave phase- line-tilt-angles and shed some light on

the coupling of the waves and turbulent wake region at high Reynolds number.

Finally, the potential for nonlinear interactions, instability and breaking of the

waves increases with both Reynolds and Froude numbers. The results of this

part of the thesis motivate future theoretical investigations into the underly-

ing generation mechanisms and improved parametrization of the role of small

scale processes, such as high frequency internal gravity waves, in large scale

circulation models in the ocean and atmosphere.



In the second half of the thesis, we have focused on the generation of an in-

ternal gravity wavepacket by a vertically localized transient forcing. We have

found that the unique combination of strong vertical localization and large

wave amplitude, typically not considered in the literature, lead to the forma-

tion of strong horizontal mean flow inside the wave forcing region that non-

linearly grows at the expense of a depleted and structurally modified emerg-

ing internal wave packet. A novel theoretical analysis is developed which can

explain the underlying mechanism for the formation of the mean flow. By ap-

pealing to scaling arguments, based on a one way wave-mean flow interaction,

we quantify the mean flow dependence on the input parameters. By means of a

phase averaging procedure, we offer additional insight on mean flow reduction

through horizontal localization of a wavepacket. Finally, mean flow contain-

ment techniques that allow the generation of a well-defined wavepacket that

preserves its structure near the source and during the propagation towards a

remote interaction region are proposed and tested. The efficiency of the tech-

niques is tested in a simulation of internal gravity wave-shear flow interaction

near a critical level. The simulations qualitatively agree with previous numeri-

cal investigations of such flow.
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On Giving

You give but little when you give of your possessions.

It is when you give of yourself that you truly give.

There are those who give with joy, and that joy is their reward.
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And there are those who give and know not pain in giving, nor do they seek

joy, nor give with mindfulness of virtue;

They give as in yonder valley the myrtle breathes its fragrance into space.

Through the hands of such as these God speaks, and from behind their eyes

He smiles upon the earth.

Gibran, The Prophet

To my Wife, my Son, my Mother

and in memory of my Dad
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CHAPTER 1

INTRODUCTION

1.1 Basics of stratified fluids

Stratified fluids are characterized by variations of their mean densities with

height/depth as a result of corresponding change in temperature or salinity or

a combination thereof. The rate of change of density in a stably stratified fluid,

i.e. a fluid in which the mean density decreases with height, is related to its so

called buoyancy/Brunt-Väisälä frequency N through

N2
= − g

ρo

dρ
dz
, (1.1)

where g is the gravitational acceleration, ρo is a constant reference density, ρ(z) is

the mean/background density of the fluid and z is vertically upward. Precisely,

the buoyancy frequency is the frequency of natural/unforced oscillations of a

fluid parcel, vertically displaced from its equilibrium position, and is the high-

est frequency that buoyancy-driven motion can have (Baines, 1995; Sutherland,

2005). Typical values of N in the ocean and atmosphere are about 10−2s−1 and,

accordingly, the time scales of buoyancy driven motions are on the order of tens

of minutes (Sutherland, 2005).

Stably stratified fluids are ubiquitous in nature. Examples include the strato-

sphere which is the part of the atmosphere between 10 and 50 kms; the bulk

of the ocean interior; and the interior of stars (Staquet, 2005). Temperature

inversions in Los Angeles basin are a major source of trapping of pollutants

from traffic and factories in the boundary layer near the ground surface. In

such a layer stable stratification is set up either by cooling at night upon ex-
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change of heat with the ground or by cold air blowing onshore after passing

over cold ocean water. The temperature inversion layer acts as a lid and pre-

vents the dispersion of pollutants until it breaks up by changing weather con-

ditions (Aguado & Burt, 2003).

Prominent examples of engineering applications of stably stratified fluids in-

clude solar ponds and nuclear reactors’ cooling circuits (Staquet, 2005). In solar

ponds the bottom of a pond is made dark and very salty so that upon heating

by the sun it does not get convected upwards (as it remains heavier than the

layer above). By retaining a warm bottom, the pond can be used to warm the

water inside pipes that cross the pond at its lowest part (Staquet, 2005).

Air sear interactions such as wind forcing and storms lead to the generation

of turbulence that mixes up the region immediately below the sea surface. Be-

low the surface mixed layer, the density increases with depth in a layer known

as the “pycnocline”, usually a result of temperature decrease. The density con-

tinues to increase with depth below the pycnocline, however, at much smaller

rates. Near the seabed, turbulence generated by flows over topography leads to

mixing of the bottom boundary layer (also referred to as the “benthic” bound-

ary layer).

As discussed in §1.4, stable stratification, in the presence of buoyancy forces,

supports internal gravity waves. The breaking of such waves has been sug-

gested as a major source of mixing in the interior of the ocean (Munk & Wun-

sch, 1998). Accordingly, it is important to study the properties of these waves

and understand the dynamics of their breaking and the resulting turbulence.

On the other hand, and as detailed in §1.9, turbulent regions are known to radi-
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ate internal gravity waves that propagate over long distances away from their

sources. As internal gravity waves extract energy from turbulence, they can

modify the energy budget and the dynamics of the turbulent source regions. As

internal gravity waves move vertically through the ocean, they provide a dis-

tinct signature that can lead to the remote detection of their turbulent sources.

Accordingly, understanding turbulence in the ocean is essential for the study

of internal gravity waves.

1.2 Nature of turbulence in geophysical flows

Much of our current understanding of turbulent flows is based on invok-

ing three major assumptions employed by Kolmogorov: namely, stationarity,

homogeneity, and isotropy (Smyth & Moum, 2001). Stationarity means that

the statistics of the flow are independent of time while homogeneity implies

that the statistics are invariant under spatial translation of the axes. Finally,

isotropy refers to invariance of the statistics under rotation and reflection of the

axes (Pope, 2000).

Geophysical flows are often complicated by the presence of background shear

flows such as large scale currents in the ocean and jet streams in the at-

mosphere. Large scale turbulent eddies are deformed by the shear lead-

ing to both inhomogeneity and anisotropy. As a result, Reynolds stresses

are produced; a mechanism by which turbulent eddies exchange momentum

with the background shear that would not be possible if the turbulence were

isotropic (Smyth & Moum, 2001, 2000).
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As fluids comply to the boundary conditions appropriate to their bounding

surfaces such as the no-slip and no-flux conditions at the ocean floor and the

more flexible conditions at the ocean surface (e.g. stress-free, wind forcing..etc),

homogeneity and isotropy are again violated. The compliance of the fluids to

such boundary conditons lead to a variety of interesting phenomena such as

turbulent bottom boundary layers which are sites of intense mixing and trans-

port and the formation of surface waves and Langmuir cells near the ocean

surface (Smyth & Moum, 2001).

Turbulence is typically generated in geophysical flows by spatially localized

sources such as breaking internal waves, local shear instabilities and flows

behind finite sized obstacles and moving objects (Lelong & Dunkerton, 1998;

Lombard & Riley, 1996; Orlanski & Bryan, 1969; Turner, 1980; Lin & Pao, 1979;

Diamessis, Domaradzki & Hesthaven, 2005). The resulting turbulence is dra-

matically different from the highly idealized space-filling homogeneous turbu-

lence. Additionally, the presence of finite-sized, buoyancy-controlled, localized

turbulent events inside a stratified fluid, naturally capable of supporting the

propagation of internal gravity waves, enables a new sink of turbulent kinetic

energy (in the form of internal gravity waves radiated away from the localized

turbulent region) that does not have a counterpart in homogeneous fluids. Fi-

nally, the often episodic nature of turbulent events in the ocean and atmosphere

precludes stationarity of the underlying turbulence on account of the transitory

nature of the turbulence-generating source/forcing.
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1.3 Buoyancy control in stratified turbulent flows

Buoyancy can have a significant impact on the evolution of turbulence in strat-

ified fluids. Specifically, stratification in the presence of a gravity force field is

another source for breaking the symmetry of turbulent flows by imposing con-

straints on the motion of fluid particles oriented along the gravity vector. Ri-

ley, Metcalfe & Weissman (1981) performed one of the earliest direct numerical

simulations of homogeneous turbulence in density stratified fluid, as a simple

extension to turbulence in homogeneous fluids that provided insight into the

basic characteristics of turbulence in stratified flows. They found that stratifi-

cation leads to exchange from (and to) kinetic to (and from) potential energies,

and the development of counter-gradient buoyancy flux leading to the genera-

tion of wave motion. They also found that stratification enhances the growth of

horizontal scales while inhibiting the growth of vertical scales. Finally, the dis-

sipation of the turbulent kinetic energy was smaller in two cases with different

stratification levels relative to a case with zero background density gradient.

Arguably, stable stratification inhibits vertical motion by setting a threshold

on the minimum kinetic energy that overturning turbulent eddies at a given

scale have to have in order to exist (Spedding, 2002a). According to Riley &

Lelong (2000) physical arguments and dimensional analysis were used inde-

pendently by Dougherty (1961), Ozmidov (1965), and Lumley (1964) to derive

the overturning/Ozmidov scale `o as

`o = (ε/N3)1/2, (1.2)

where ε is the dissipation rate of turbulent kinetic energy. As Ozmidov scale

provides an estimate for the largest turbulent eddies at which overturning can

occur, one of the approaches to understanding the influence of stratification on
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turbulence is to compare the evolution of some characteristic of the overturning

turbulent motion vertical scale to the Ozmidov scale (Itsweire, Koseff, Briggs &

Ferziger, 1993).

By means of numerical simulations of a homogeneous stratified shear

flow Itsweire, Koseff, Briggs & Ferziger (1993) found, in agreement with the

laboratory experiments (Itsweire, Helland & Van Atta, 1986), that the onset of

buoyancy control, where significant fraction of the large scale eddies are dom-

inated by stratification, occurred when the Ozmidov scale was nearly equal

to the vertical scale of the density fluctuations and that stratification eventu-

ally controlled all scales of motion when Ozmidov scale was about an order of

magnitude larger than the Kolmogorov scale. The first transition point marks

the end of what Gibson (1980, 1986) refers to as “active” turbulence and the be-

ginning of the buoyancy affected regime which he refers to as “active+fossil”.

The second transition point represents the begining of the “fossil” turbulence

regime where buoyancy controls the flow at all scales.

While Gibson’s ideas are useful in explaining some aspects of turbulence in

stratified flows, they do not explain some of the features of laboratory exper-

iments, numerical simulations and geophysical data (Riley & Lelong, 2000).

An example for such experiments is that performed by Lin & Pao (1979) in

which they towed an axisymmetric object horizontally in a density stratified

tank. They found that the near wake dynamics are similar to the classical wake

dynamics in homogeneous fluids. However in the far field they found that

the stratification has considerably affected the behavior of the wake. They also

found that the late wake consists of quasi-horizontal motions (they referred

to as “pancake street”) with complex vertical structure along with an internal
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gravity wave field.

For stratified turbulent flows, a local Froude number can be defined as

F = u′/N`, (1.3)

where u′ is a measure of the horizontal fluctuating/turbulent velcity and ` is

a characteristic length scale of the energy containing eddies (such as the hor-

izontal or vertical scale of the pancakes). It is thus a measure of the relative

importance of the buoyancy compared to inertial forces. As turbulence decays

u′ decreases and ` tends to increase until the local Froude number becomes

O(1) and the buoyancy forces start to dominate the flow. This argument has

motivated the development of asymptotic theories for the F = 0 limit (Riley,

Metcalfe & Weissman, 1981). One of the essential features of the low Froude

numer based theories (Riley, Metcalfe & Weissman, 1981; Embid & Majda, 1998)

is the ability to clearly differentiate and hence isolate the propagating (internal

gravity waves with their associated fast time scales) and the non-propagating

slowly varying components of the flow ( Riley & Lelong (2000) refers to this as

the “PV” component of the flow, as it carries all the potential vorticity of the

flow, while Lilly et al. (1998) calls it “stratified turbulence”).

Multiple experimental investigations of the dynamics of the stratified turbu-

lent wake of a towed sphere, as a canonical localized turbulent flow with

shear and stratification, were performed by Spedding and co-workers (Sped-

ding, Browand & Fincham, 1996a,b; Spedding, 1997a,b, 2001, 2002a,b). Par-

ticle Image Velocimetry (PIV) was used to obtain accurate two-dimensional

measurements of the velocity field across horizontal and vertical transects

through the mid-to-late time wake. A broad range of internal Froude numbers,

Fr ≡ 2U/(ND) ∈ [4, 240] was considered, where U, D and N are the tow speed,
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sphere diameter and buoyancy frequency, respectively. The maximum body-

based Reynolds number, Re = UD/ν, value attained in these experiments was

Re = 2×104. For a minimum value of Re ≈ 5×103, scaling arguments (Spedding,

Browand & Fincham, 1996a) and subsequent experiments (Spedding, Browand

& Fincham, 1996b) found that the minimum Froude number value necessary

to obtain a fully three-dimensional turbulent near wake was equal to Fr ≈ 4,

in agreement with the value proposed by Chomaz et al. (1993). For the above

Fr range and values of Re exceeding the indicated minimum, Spedding (1997a)

demonstrated that all wakes have self-similar scaling behavior. The underly-

ing cause for the self-similar scaling is that the decrease in local wake velocities

is accompanied by an increase in local length scales. As a result, a local Froude

number based on these scales will decrease until it becomes of O(1). Thus, re-

gardless of the initial Froude number/level of stratification, the late stages of a

stratified wake will eventually be fully controlled by buoyancy.

Based on studying the variation of the exponents of the power laws as-

sociated with the self-similar scaling of the mean defect velocity profile and

physical arguments, Spedding (1997a) identified three dynamical regimes in

stratified wake evolution. At early times, three-dimensional (3-D) non-stratified

turbulent axisymmetric wake structure and dynamics govern the flow. Exper-

iments (Browand, Guyomar & Yoon, 1987), numerical simulations (Itsweire,

Koseff, Briggs & Ferziger, 1993) and theoretical analysis (Gibson, 1980; Riley &

Lelong, 2000) of decaying stratified turbulent flows conducted prior to Sped-

ding (1997a) indicate that buoyancy forces begin to influence the larger scales

of the flow around Nt ≈ 1. The corresponding manifestation of the onset of

buoyancy control in experiments on stratified wakes of self-propelled slender

bodies was a suspension of the growth of the wake height at Nt = 2 (Lin & Pao,

1979) (Nt is defined as 2πt/Tb where Tb = 2π/N, thus Nt = 2π corresponds to one
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buoyancy period).

At Nt ≈ 2, the wake dynamics transition into the non-equilibrium (NEQ)

regime which is characterized by reduced decay rates of the horizontal mean

velocity. Spedding (1997a) conjectured that this deceleration of mean defect ve-

locity decay can be attributed to the conversion of available potential to kinetic

energy near the wake center through restratification effects. The wake width

continues to grow exactly like its unstratified counterpart (Tennekes & Lumley,

1972). In contrast, the wake height remains approximately constant through-

out NEQ and was found to scale approximately as Fr0.6 (Spedding, 2002a). Two

other key features of NEQ are the gradual suppression of vertical velocities

and transport inside the wake core (Spedding, 2001) and the radiation of high-

frequency internal waves from the wake into the ambient. It is during the

NEQ regime that coherent patches of vertical vorticity with low aspect ratio (

the “pancake” vortices in Lin & Pao (1979)) emerge, growing both by merging

and diffusion (Spedding, 1997a).

A steeper decay rate of the mean defect velocity, with is then observed at a tran-

sition time of Nt ≈ 50, leading into the quasi two-dimensional regime (Q2D)

that persists for all measurable times up to Nt ≈ 2, 000 (Spedding, 1997a). A

(x/D)1/3 power law continues to characterize wake-width growth. The wake

height transitions into a diffusively-driven growth. Once the Q2D regime has

been established, almost all remaining kinetic energy in the flow resides within

the pancake vortices, as vertical velocities are near-negligible. The horizon-

tal structure of the wake consists of quasi-two-dimensional countersigned vor-

tices resembling a two-dimensional wake but with a vertical structure (Riley &

Lelong, 2000). The flow field nonetheless is not purely two-dimensional and
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the mean flow does not follow the decay laws of plane wakes (Tennekes &

Lumley, 1972). Horizontal vorticity field on a vertical plane indicates pairs of

opposite-signed stable and highly diffuse inclined vertical shear layers (Sped-

ding, 2002a). Each shear layer pair is inferred to be a cross section through

a vertically coherent pancake eddy, with the maximum shear occuring at the

pancake edges. Viscous diffusion provides a means of vertical coupling across

shear layers and is responsible for their thickening and eventual merging.

Fincham, Maxworthy & Spedding (1996) found that the vertical derivative of

the horizontal velocities contributes 80% towards the kinetic energy dissipa-

tion rate and thus the horizontal derivatives contribution is very little. Hence

as Spedding (2002a) comments: although the vertical vorticity structure on hor-

izontal planes is the most prominent feature observable in the laboratory, it is

the vertical variation (i.e. the vertical shear) in these motions and at the upper

and lower wake boundaries that is most intense. Lilly, Bassett, Droegemeier &

Bartello (1998) suggested that at sufficiently high Reynolds numbers the flow

in adjacent horizontal layers would tend to decouple, leading to shear insta-

bilities and small-scale secondary turbulent events. The secondary turbulent

events at high Reynolds numbers can have significant impact on the late time

wake dynamics. Diamessis, Spedding & Domaradzki (2010b) found that the

increased shearing along with the secondary turbulent events lead to prolon-

gation of the Non-equilibrium regime as manifested in the persistence of the

slower decay rates of the mean wake kinetic energy. They also found that these

intermittent turbulent events possess significant vertical kinetic energy leading

to overturning at times where, based on their results, buoyancy is believed to

have completely suppressed the original turbulence. They suggest a reexami-

nation of the commonly perceived life-cycle of a localized stratified turbulent
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patch and a possible reconsideration of the existing parametrization of strati-

fied turbulence and mixing in the ocean and atmosphere.

As internal waves are radiated by the wake during the NEQ regime, it is rea-

sonable to expect that intense internal wave radiation will continue over much

longer time at high Re, on account of the prolongation of the NEQ regime.

1.4 Internal gravity waves

1.4.1 Background and motivation

In the presence of a continuously varying stable background density gradi-

ent (dρ/dz < 0), a perturbed dense fluid parcel moving upward towards a less

dense level will , by virtue of gravity, experience a net downward force that

tends to restore the parcel to its equilibrium position. The resulting oscilla-

tory motion is generically referred to as an “internal gravity wave”. Unlike

the interface-trapped horizontally-moving surface waves that form at large

density discontinuities such as the air-water interface at the ocean surface,

the existence of a continuously varying density gradient adds the possibility

of vertically propagating internal waves in the form of beams or rays that

cross the constant density surfaces (isopycnals) transporting energy through

the ocean/atmosphere away from their sources (Thorpe, 2005).

Upon successive reflections of internal wave beams in a finite depth water, hor-

izontally moving internal waves with a characteristic vertical structure (vertical

wave modes) can be produced (Garrett & Kunze, 2006). Solitons; horizontally
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moving long-wave pulse or train of pulses that maintain their shape during

propagation, are also another common form of internal waves that are often

generated through the interaction of the barotropic tide with topographic fea-

tures on and along the shelf break (Diamessis & Redekopp, 2006).

“Vertically propagating” internal waves occur throughout the atmosphere

and ocean on scales as small as meters and as large as thousands of kilome-

ters (Sutherland, 2005). Internal wave beams having the internal tide period are

often detected near topographic features in the ocean (Thorpe, 2005). Mountain

waves are another example for internal wave radiation resulting from the dis-

turbances created by the rising air over a topographic barrier or strong winds

blowing down the mountain along its lee slope (Durran, 1990). In mid-water

internal wave beams are radiated away from regions of active turbulent mixing

and during the collapse of a mixed region of decaying turbulence (Maxworthy,

1980; Thorpe, 2005). As the focus of this thesis is on vertically propagating

internal waves we will refer to them hereafter as just internal gravity waves

(IGWs) without the vertical propagation qualifier.

Small scale turbulence leading to mixing in mid-air/water typically results

from the breaking of IGWs (Munk & Wunsch, 1998). This process is accounted

for in large-scale circulation models through a turbulent diffusivity. Waves also

deposit momentum into the local mean flow at the breaking level, a process that

is usually modelled through a transport coefficient (Staquet, 2005). A robust

understanding of these small scale processes is necessary for the development

of accurate subgrid scale models that faithfully represent the effect of the small

scale unresolved motions on the large resolved ones.

We now examine the spatial structure of IGWs and explore the relationships
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between the various spectral characteristics of an internal wave beam (wave

lengths, frequencies, phase and group velocities). Simple analytical relations

between the wave properties can be derived under the assumption of small

displacement amplitude. The relations thus obtained, although they hold only

for low to moderate amplitude waves, provide a useful physical insight into

the intriguing properties of these waves.

1.4.2 Properties of internal waves

Sutherland (2005) demonstrated the basic properties of IGWs through the use

of parcel arguments and solutions to the linearized Navier Stokes equations

under simplifying assumptions. Most notably, the dispersion relation for IGWs

is derived based on the assumption of small parcel displacements and constant

background density gradient. In essence this relation shows that fluid motions

at an angle to the vertical occurs with frequency (ω), given by

ω = Ncos(θ), (1.4)

where θ is the angle that the 3D wave number vector K = (κ, `,m) forms with

the horizontal direction. This angle can be expressed in terms of K and its

horizontal component KH = (κ, `) through

cos(θ) = |KH |/|K| =
√

κ2 + `2

κ2 + `2 + m2
. (1.5)

The phase velocity vector; the vector whose direction is perpendicular to the

constant phase lines and whose magnitude is the speed of the motion of crests

along that direction follows from the dispersion relation:

Cp =
ω

|K|

−→
K
|K| =

N
|K|cos(θ)

[

cos(φ)cos(θ), sin(φ)cos(θ), sin(θ)
]

, (1.6)

13



C
p

C
g

θ

θ
x

z

(κ,−m)(−κ,−m)

(κ,m)(−κ,m)

C
p

C
gC

g

C
g

C
p

C
p

Figure 1.1: Schematic of internal wave rays radiated away from a verti-
cally oscillating horizontal cylinder in a uniformly stratified
fluid.

where tan(φ) = `/κ. Finally, the group velocity; the velocity at which the energy

is transported by the waves:

Cg = ∇Kω = (
∂ω

∂κ
,
∂ω

∂`
,
∂ω

∂m
) =

N
|K| sin(θ)

[

cos(φ)sin(θ), sin(φ)sin(θ),−cos(θ)
]

. (1.7)

An intriguing consequence of the above relations is that the group and phase

velocities are perpendicular to each other and that if the wave transports energy

upwards, then the phase lines move downwards and vice versa (Sutherland,

2005). Another interesting result is that the vertical component of the group

velocity vanishes for waves with θ = 0 and θ = 90◦ and that the maximum

group velocity is associated with waves having θ = 35◦ (Sutherland, 2005). The

above-mentioned properties of these waves are illustrated in Fig. 1.1 which rep-
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resents a schematic of an internal wave beam pattern that mimics that which

is generated experimentally by vertically oscillating a horizontal cylinder in

a uniformly stratified fluid at a frequency ω. Mowbray & Rarity (1967) used

this set up to verify the theoretically predicted phase line configuration and the

wave dispersion relation.

The relations among the basic state fields (velocity components, density and

pressure) for a small amplitude plane/infinitely periodic IGW, aka “polariza-

tion relations” were also derived by Sutherland (2005). Two important esti-

mates that follow from these relations are the wave momentum transport:

〈u′w′〉 = 1
4

N2sin(2θ)|A2
ζ |, (1.8)

where Aζ is the vertical displacement amplitude defined through Aρ = −
dρ
dz

Aζ

where Aρ is the amplitude of the density perturbation field associated with the

IGW. Consequently waves with θ = 0 and θ = 90◦ do not transport horizontal

momentum vertically. Also for waves having the same vertical displacement,

Aζ , those with θ = 45◦ transport the maximum momentum (Sutherland, 2005).

As turbulence generates IGWs (see §1.9), it is important to emphasize some

of the important differences between the properties of internal waves. Apart

from the ability of IGWs to transport energy far from their generation sites

and their limited range of spatiotemporal scales close to their generation sites

compared to turbulence, the ability to clearly distinguish and separate internal

gravity waves from turbulence is a fundamental issue in stratified turbulent

flow that can potentially lead to improved understanding and subsequent com-

putational data analysis of these flows. Jacobitz, Rogers & Ferziger (2002) sum-

marize some of the subtle differences between turbulence and IGWs, namely:
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• Wave motion satisfies linear equations, whereas turbulence is inherently

nonlinear, However, when both waves and turbulence are present the mo-

tions are coupled nonlinearly and it is unclear how to extract the wave

component of the flow.

• In turbulence, energy is advected at the speed of the motion, whereas

waves transport energy via pressure-velocity correlations, usually at a

group velocity that is greater than the particle velocity.

• Except when they break, waves do not produce mixing. Although they

can transport momentum, they cannot transport scalars. Thus the scalar

flux 〈w′ρ′〉, should be large in regions dominated by turbulence and small

where waves predominate.

• The relative phase of vertical velocity fuctuations w′ and density fuctua-

tions ρ′ is different for waves and turbulence. For stably stratified flows,

in-phase motion between w′ and ρ′corresponds to down-gradient turbu-

lent transport, while 180◦ out-of-phase motion is associated with counter-

gradient turbulent transport. For wave motions, w′ and ρ′ have a phase

difference of 90◦ and there is no mean correlation between them.

1.4.3 Instability mechanisms

Internal gravity waves are prone to various types of wave instabilities that de-

termine their fate as they propagate away from their generation sites. It is thus

of naval as well as geophysical interest to assess the potential for wave break-

ing, the generation of small scale turbulence and the associated mixing of the

water column.
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Wave instabilities and breaking in mid-air/water redistribute the overall wave

field energy into a wide range of space and time scales leading to a nearly

universal spectrum. Such a spectrum was empirically determined by Garrett

& Munk (1972, 1975) who relied on the linear theory to represent the struc-

ture and dispersion of the waves (Thorpe, 2005). As Sutherland (2006a) argues,

nonlinear wave interactions far from their generation sites crucially determine

how energy from various sources is transferred to such a wide and statistically

stationary spectral range.

Breaking of IGWs in the ocean and atmosphere is often attributed to the pres-

ence of “critical levels” which are depths/altitudes at which the horizontal

wave phase speed matches the velocity of a background shear flow (Brether-

ton, 1966; Booker & Bretherton, 1967; Winters & D’Asaro, 1989, 1994). The

highly nonlinear interaction leads to intensification of the wave shear and over-

turning of the isopycnal surfaces until the waves eventually break via convec-

tive instability (Winters & D’Asaro, 1994). Even in the absence of background

shear monochromatic, undamped IGWs can break when they become satu-

rated (Jones & Houghton, 1971). Saturation occurs when IGWs move upward

in a decreasing background density gradient where their amplitude has to in-

crease to conserve their vertical flux of momentum (Eliassen & Palm, 1961). The

continual increase of the waves’ amplitude eventually leads to their breaking.

In the absence of shear and saturation, a plane periodic IGW is unstable due

to parametric instability even at infinitesimally small amplitudes provided

the time scale of the instability is smaller than the diffusive time scale of the

waves (Sutherland, 2001). For the parametric instability, secondary waves of

half the primary wave frequency grow in amplitude through resonant interac-
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tions with the primary wave until they ultimately break (Drazin, 1977; Lom-

bard & Riley, 1996). Sutherland (2005) argues that the parametric instabilities

are not relevant to realistic situations, as their growth rates are too small to

the extent that they may not grow sufficiently during the life-time of a typi-

cal IGW. He also argues that in most geophysical circumstances IGWs are not

perfectly monochromatic and hence finite amplitude waves disperse as they

propagate (Sutherland, 2005).

Through fully nonlinear numerical simulations, Sutherland (2001) showed

that weakly nonlinear interactions between the waves and their wave-induced

mean horizontal flow dominate the dynamics of large amplitude quasi-plane

IGWs. Resonant interactions between the waves and their induced mean flow,

known as “self-acceleration” occur when the waves are of such large ampli-

tude that their wave-induced mean flow is at least as large as their horizontal

group velocity (Sutherland, 2001). Sutherland (2001) derived the critical wave

amplitude at which resonant interactions occur, namely

AS A =
1

2π
√

2
sin(2θ), (1.9)

where AS A = Aζ/λx is referred to as the wave steepness, a quantity that mea-

sures how large is the wave displacement relative to its horizontal wavelength.

Waves satisfying the self-acceleration condition, i.e. A > AS A evolve until they

become convectively unstable and eventually break. Sutherland (2001) has also

derived two analytical conditions for the critical wave steepness for overturn-

ing (static instability) AOT and breaking (via convective instability) ACV , namely

AOT =
1
2π

cot(θ), (1.10)

ACV =
1
2π

cot(θ)(1+ cos2(θ)). (1.11)
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Waves satisfying the overturning condition ( 1.10) are statically unstable which

means they are susceptible to convective instabilities and breaking. For break-

ing to happen, the time scale for the growth of the convective instability has

to be much shorter than the wave period, otherwise the periodic wave motion

will restore the statically unstable regions before breaking happens (Suther-

land, 2001). The convective breaking condition however ensures that the con-

vective instability has time to grow substantially before one wave period.

1.5 Experimental generation of internal gravity waves

It is important to review the experimental methods for IGW generation in the

laboratory. The insight gained from such simple and controlled experiments,

where IGW beams are generated by an oscillatory source, can help improve the

reader’s understanding of how IGWs propagate in a stratified fluid, how their

properties are related to one another and to the source characteristics (size and

frequency).

In their classical laboratory experiment, Mowbray & Rarity (1967) have oscil-

lated a horizontal cylinder vertically in a stratified salt solution with constant

buoyancy frequency N. As depicted in Fig. 1.1, four beams forming the so

called “St. Andrew’s cross” pattern emanate from the cylinder making an an-

gle with the horizontal, in agreement with the dispersion relation based on

the frequency of oscillation of the cylinder and the background frequency, and

having a wavelength comparable to the cylinder diameter. If the cylinder os-

cillation stops a growing gap appears between the cylinder and the rays which

continue to propagate now as “wave packets” (Thorpe, 2005).
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Towing sinusoidal corrugated false floors, cylindrical or Gaussian shaped

bumps horizontally inside a density stratified tank is another method by which

internal gravity waves are usually generated in the laboratory (Thorpe, 1981;

Koop, 1981; Koop & McGee, 1986). The waves thus generated are steady in a

frame of reference moving with the object. In the laboratory frame, however,

the waves propagate at the towing speed. The shape of the floor corrugation is

dependent on the desired characteristics of the wave field. The sinusoidal cor-

rugation is used to generate IGWs that can be approximated as monochromatic

whereas the Gaussian/cylindrical objects are used when the desired wave field

is broad-band and spatially compact (Koop, 1981).

More recently Gostiaux, Didelle, Mercier & Dauxois (2007) designed a novel

wave generator that consists of a vertical stack of plates through which two

camshafts go in order to control their relative positions. At rest the plates are

shifted sinusoidally and the rotation of the camshafts apply the required peri-

odic motion to the plates. The collective action of the plates is such that a uni-

directional IGW is generated. The wave moves upward/downward for clock-

wise/anticlockwise rotation of the camshafts. The generated wave is nearly

monochromatic both spatially and temporally and can have any complex wave

form (e.g. sinusoidal, Gaussian..etc) by appropriately modifying the camshaft

eccentricity.
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1.6 Numerical generation of internal gravity waves

Two approaches are used to produce the initial IGW field in numerical pro-

cess studies: One strategy designates an initial condition as a prescribed per-

turbation of the density and velocity fields or velocity stream functions in the

form of an exact solution of the linearized internal wave equations (Winters &

D’Asaro, 1989; Sutherland, 2006a; Lin, Ferziger, Koseff & Monismith, 1993). An

alternative approach consists of introducing into the governing equations ap-

propriately specified mechanical forcing (body force) terms, operative within a

prescribed generation region (Slinn & Riley, 1998a; Dohan & Sutherland, 2005;

Campbell & Maslow, 2003). The forcing can either have finite duration (Fritts,

1982) or persist throughout the entire simulation (Slinn & Riley, 1998a; Dohan &

Sutherland, 2005; Zikanov & Slinn, 2001) generating either a localized packet or

a continuous wave-train, respectively. The mechanical forcing approach is pre-

ferred as it allows greater control over the time-scale of energy injection into the

IGW field and enables a closer comparison with laboratory experiments, as the

structure of the forcing terms can be modeled after that of experimental IGW

generators (such as the novel wave generator described by Gostiaux, Didelle,

Mercier & Dauxois (2007)). Furthermore, the mechanical forcing has the ad-

vantage of allowing the initial IGW to develop more “naturally”, i.e. within

the constraints of the Navier-Stokes equation, which is particularly suitable for

higher-order accuracy element-based flow solvers, such as the one used in this

thesis (Diamessis, Domaradzki & Hesthaven, 2005). High-order accuracy nu-

merical codes can be particularly sensitive to initial/boundary conditions and

forcing that are not exact solutions of the governing equations (Boyd, 2001),

as persistent and disruptive transients develop (Diamessis, Spedding & Do-

maradzki, 2010b).
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1.7 Remote interactions of internal gravity wave packets

Once far from their generation site, internal gravity waves are capable of trans-

porting energy over very long distances before depositing it remotely through

localized breaking events in mid-water/air or near boundaries (Thorpe, 2005).

In the study of IGW breaking, it is commonly assumed that the IGW under con-

sideration is space-filling and of persistent duration. However, because of the

transience in their generation, previously encountered nonlinear interactions

in mid-water/air and the finite dimension of their source, IGWs often propa-

gate as relatively short packets or groups of finite extent in one or more spa-

tial dimensions. This limited extent can bear significant implications in char-

acterizing the transmission, reflection and dissipation of an IGW interacting

with a critical layer, sloping boundary or caustic (Thorpe, 2001). Important in-

sight into the highly nonlinear physics of such interactions has been obtained

through numerical process studies based on Direct Numerical or Large Eddy

Simulations (DNS or LES) (Winters & D’Asaro, 1989; Javam & Redekopp, 1998;

Slinn & Riley, 1998a; Javam, Imberger & Armfield, 2000; Campbell & Maslow,

2003).

Transmission/reflection phenomena and the additional turbulence/mixing

due to breaking that accompany the interaction of an IGW with current shear,

sloping topography or variable background stratification are sensitive to large

wave steepness. The sensitivity of IGW dynamics is strongest the closer the

initial wave steepness is to the breaking limit (Sutherland, 2001). Therefore,

it is imperative that a DNS/LES study of IGW propagation and breaking be

equipped with a wave generation mechanism that minimizes transients and

allows maximum flexibility in choice of wave steepness without altering the
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externally prescribed wave structure, vertical extent and characteristic prop-

erties (amplitude, primary frequency/wavelength and group/phase velocity

predicted by linear theory). In particular, when a vertically localized IGW

packet is required, it must remain robust both near the source but also dur-

ing its subsequent propagation away from the source, prior to its arrival at the

interaction region.

1.8 Nonlinearity and dispersion of internal gravity waves

The requirement of a wave packet with a finite spatial extent poses its own set

of numerical challenges in terms of sustaining a packet structure that is robust

and well-defined both as the packet leaves the source region and also as it prop-

agates towards a remote interaction region. The efficient design of mechanical

wave forcing has been examined by Slinn & Riley (1998a). By analyzing the

linearized equations of motion augmented with forcing, they found that for the

envelope of the emerging signal to be steady and uniform in shape, the verti-

cal extent of the forcing region has to be larger than one vertical wavelength.

When the forcing region is narrower than a vertical wavelength, the emitted

signal is modulated by an irregular, non-constant envelope. Additional chal-

lenges for maintaining a robust spatial structure are brought about when large

wave amplitudes are required due to the resulting enhanced wave dispersion

with respect to a small amplitude wave Winters & D’Asaro (1989).

As we will illustrate in chapter (6), by means of residual mean flow genera-

tion and its subsequent interaction with the propagating wave, highly nonlin-

ear effects can also produce significant distortion and weakening of a large-
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amplitude wave packet that is strongly localized in the vertical. Such effects

are highly undesirable when large wave amplitude is a necessary condition for

IGW breaking to occur in any of the interaction scenarios described in section

(1.7).

The formation of residual mean flow in the generation region of numeri-

cally simulated IGWs has been observed (although not reported) by Slinn and

Riley who focused on the study of the reflection of IGWs off a sloping bound-

ary and used forcing terms identical to those we consider in this thesis Slinn

& Riley (1998a,b). A rotated coordinate system was employed to allow for pe-

riodic discretization of the up-slope direction. A Rayleigh damping/sponge

layer aligned with the top boundary of the domain enabled the absorption of

the residual mean flow which was oriented in the along-slope direction, nor-

mal to the gravity vector (D.N. Slinn, personal communication). Although

sponge layers can potentially remove the mean flow, they are computation-

ally expensive as they tend to be rather thick and consume a large number of

grid points (e.g. O(10%)of the grid points in the slope-normal direction Slinn

& Riley (1998a)).

Issues of residual mean flow generation were later reported by Zikanov &

Slinn (2001) for a similar flow configuration but with three-dimensional forcing

introduced to reproduce the oblique incidence of IGWs on a sloping bound-

ary thereby allowing the formation of an along-slope current. During the initial

transient adjustment phase of the simulations, before the wave reached the bot-

tom slope, a mean flow, transitory in nature, was observed in the along-slope

direction at the propagating front of the wave and explained on the basis of the

local transient change in Reynolds stress in front of the wave. Another along-

slope mean flow, non-propagating in nature (i.e. residual flow), was also gener-
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ated in the forcing region in a direction opposite to that produced at the wave

front and was attributed to the Reynolds stress gradient in the slope-normal

direction which is caused by the growth of the wave as it passes through the

forcing region. This residual mean flow component appeared to resist further

downward propagation of the wave and thus had to be removed.

1.9 Generation of internal gravity waves by turbulence

The radiation of IGWs from turbulent mixed layers into a surrounding stably

stratified fluid (e.g. IGWs emitted from the boundary layer on the earth’s sur-

face to the atmosphere) has been identified as a potential source of IGW genera-

tion in the ocean and atmosphere since the early work of Townsend (1959, 1965,

1968). More recently, Wijesekera & Dillon (1991) observed IGWs propagating

down through the pycnocline in the equatorial Pacific after sunset, presumably

caused by convective overturning turbulent motions in the surface mixed layer

resulting from a variety of sources such as surface cooling, wind forcing, and

storms. There are, however, insufficient systematic observations of the spectral

characteristics or the energy flux associated with such waves (Thorpe, 2005).

Reliable estimates of the energy flux associated with small scale IGWs can pro-

vide insight into the significance of their role in mixing the ocean interior and

their impact on large scale circulation models in the atmosphere.

Shear flow instabilities leading to transition and turbulence have also been

suggested as a source of the observed internal waves at high altitudes in the

mesosphere and upper stratosphere (Davis & Peltier, 1979; Holton, Haynes,

McIntyre, Douglas, Rood & Pfister, 1995; Sutherland, Caulfield & Peltier,
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1994). Moum, Hebert, Paulson & Caldwell (1992) also suggest that the equa-

torial undercurrent is a main source of internal waves that drive mixing in the

thermocline.

Laboratory scale experiments with grid generated turbulence in uniformly

stratified fluids played a key role in improving our understanding of the pro-

cess of internal wave radiation by stratified turbulent flows and the spectrum

of the radiated waves. Linden (1975) experimentally studied the deepening of

a turbulent region set up by the vertical oscillation of a horizontal grid at the

top of a tank containing a uniformly stratified fluid. IGWs were radiated from

the base of the mixed layer towards the underlying linearly stratified region,

with typical phase line angles to the vertical around 35◦. He estimated that

significant energy was lost to wave radiation that the rate of deepening of the

mixed layer was significantly reduced. To the contrary of this result, by per-

forming similar experiments on a uniformly stratified fluid and a two layer

fluid (two initially unmixed homogeneous fluid layers with different densities

where IGWs are not supported), Xue-Quan & Hopfinger (1986) found that the

entrainment rate was not affected by the wave radiation.

Sutherland and collaborators (Sutherland & Linden, 1998; Sutherland, Dalziel,

Hughes & Linden, 99; Dohan & Sutherland, 2003; Flynn & Sutherland, 2004;

Dohan & Sutherland, 2005; Aguilar & Sutherland, 2006; Aguilar, Sutherland

& Muraki, 2006; Munroe & Sutherland, 2008) used a novel synthetic schlieren

technique (Dalziel, Hughes & Sutherland, 1998; Sutherland, Dalziel, Hughes &

Linden, 99; Dalziel, Hughes & Sutherland, 2000) to visualize and measure the

local amplitude of IGWs generated by turbulence on two dimensional vertical

planes and record its evolution over time. The technique relies on the variation
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of the index of refraction of light as a result of local variations in the density

gradient field caused by the local stretching and compressing of the isopycnal

surfaces by the propagating waves.

Sutherland & Linden (1998) examined the shear excitation of IGWs by perform-

ing experiments in which an unstable shear layer in a nearly mixed top region

flowed over a thin vertical barrier in the center of a tank. Instabilities in the

lee of the barrier and small scale turbulence led to excitation of IGWs from the

base of the mixed region down towards a strongly stratified region. The phase

tilt of the waves with respect to the vertical θ was found to be in the 45− 60◦

range. They estimated that the wave momentum transported by the waves

lead to deceleration of the mean flow by approximately 7% of its characteristic

flow speed, a result that was nearly consistent with a two dimensional numer-

ical simulation they used to complement their experimental results. Based on

the prevalence of waves in the 45− 60◦ range and the results of their numeri-

cal simulations in which they observed significant changes in the dynamics of

the mixed region when strong wave radiation occurred, they suggested that

IGW excitation is a result of highly nonlinear feedback between the waves and

the mixed region. Accordingly, the selection of waves in a narrow propagation

angle range around 45◦ is based on the capability of such waves to strongly

modify the mixed region and causing the maximum drag on the mean flow.

Dohan & Sutherland (2003, 2005) performed experiments and numerical sim-

ulation to study IGW excitation from a stationary turbulent mixed region (i.e.

turbulence with no mean flow) at the top of a uniformly stratified region.The

turbulence was created by the vertical oscillation of a horizontal grid. As the

observed waves were predominantly in a very narrow angle range (45±5◦), the
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angle at which the waves would carry the maximum horizontal momentum

away from the turbulent region, they suggested that wave excitation is a re-

sult of a highly nonlinear wave-turbulence interaction. Interestingly, Aguilar,

Sutherland & Muraki (2006); Munroe & Sutherland (2008) performed similar

experiments, however, with a moving source of turbulence created by drag-

ging a wooden object with a square wave form at the top of a uniformly strat-

ified region. The separated flow and the eddies shed in the lee of the steep

square-shaped wave form were found to excite IGWs that propagate down to-

wards the stratified region in an angle range close to 45◦ which leads them to

conclude that the properties of turbulence generated IGWs are universal, i.e.

independent of the forcing mechanism.

Using large eddy simulation (LES) Taylor & Sarkar (2007) simulated IGW ex-

citation by a turbulent bottom Ekman layer underlying a uniformly stratified

outer layer. Turbulence in the boundary layer lead to the excitation of hor-

izontally moving IGWs inside the pycnoline that forms above the turbulent

mixed region during the simulation. Vertically propagating IGWs were also ra-

diated towards the outer layer with angles in the (35−60◦) range. They propose

a viscous-decay-based model to explain the prevalence of a relatively narrow

wave frequency peak in about eight boundary layer thickness distance through

the outer layer. The model is sensitive to the initial distribution of amplitudes

of the wave component frequencies but nevertheless is capable of capturing

the prevalence of wave angles bigger than 26◦ in agreement with the angles

predicted from the simulations. By vertically integrating the evolution equa-

tion for the turbulent kinetic energy they found that the vertical energy flux

carried by the waves, although it represents only a few percent relative to the

dissipation rate, is comparable to the average buoyancy flux.
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Finally, Pham, Sarkar & Brucker (2009) performed direct numerical simula-

tions (DNS) of an unstable shear layer in a weakly stratified region overlying a

strongly stratified region. Strong amplitude IGWs were initially excited by the

Kelvin-Helmholtz (KH) rollers with propagation angles that agreed with lin-

ear theory arguments based on a Doppler-shifted KH mode frequency. Weaker

waves with relatively broad spectrum near their generation region were subse-

quently excited by small-scale turbulence; however, far from their generation

sites the propagation angle were concentrated around 45◦. They finally show

that momentum flux carried by the waves can be as large as 10%of the initial

shear layer momentum and that the vertical flux of energy extracted from the

shear layer by the propagating waves can be as large as 17% of the turbulent

production and 75%of the buoyancy flux and hence the dynamics of the shear

layer can be significantly affected by IGW radiation.

1.10 Wake generated internal gravity waves

Stably stratified turbulent wakes are another fundamental fluid flow of rele-

vance to environmental and ocean engineering applications where emission

of IGWs by turbulence is observed. Geophysical examples include the oceanic

wakes of islands (Tomczak, 1988), headlands (Pawlak, MacCready, Edwards

& McCabe, 2003) and seamounts (Gibson, Nabatov & Ozmidov, 1993) and the

atmospheric wakes of mountains (Rotunno, Grubisic & Smolarkiewicz, 1999).

Such wakes are potent agents of across and along-isopycnal transport and mix-

ing of energy, heat and biogeochemical constituents not only near the wake

source but also over significant distances away from it (Diamessis, Spedding
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& Domaradzki, 2010b). From an ocean engineering perspective, underwater

vehicles operate most efficiently in the pycnocline of the open or littoral ocean.

The ambient stratification, however, has a unique effect on the vehicle

wake through the formation of distinct late-time, large aspect ratio quasi-

horizontal/pancake vortices and the radiation of internal waves both by the

vehicle and its turbulent wake (Schooley & Stewart, 1963; Lin & Pao, 1979;

Gilreath & Brandt, 1985; Hopfinger, Flor, Chomaz & Bonneton, 1991; Lin, Lind-

berg, Boyer & Fernando, 1992; Bonneton, Chomaz & Hopfinger, 1993). Thus,

the wake may establish a distinct late-time signature that may potentially be

traced directly to the generating body. Internal gravity waves generated by a

turbulent wake inside or below the pycnocline, can propagate towards the sur-

face and leave a signature that can be detected by satellite optical imagery from

space, such as the sea surface brightness anomalies reported in Keeler et al.

(2005), that were detected far from a submerged turbulence source (a buoyant

municipal outfall wastewater field) in the Sand Island, Honolulu. Unlike in-

ternal waves generated by turbulence in a well-mixed region (see §1.9), waves

generated by a turbulent wake in a uniformly stratified fluid provides a unique

physical setting where turbulence and buoyancy forces, caused by the stable

stratification, are directly interacting.

Theoretical moving point source models by Miles (1971) and Lighthill (1978)

developed specifically for the body generated waves proved successful in qual-

itatively predicting the phase line geometry downstream of an obstacle and

outside its wake region (Peat & Stevenson, 1975; Chashechkin, 1989). The wake

generated IGW field, however, was first investigated by Gilreath & Brandt

(1985) who conducted one of the earliest experiments that analyzed in detail
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the properties of the random wave field behind a self-propelled body inside a

stably stratified fluid. They observed three types of waves in the wake of the

body. The first type is a deterministic (in the sense of being repeatable in detail)

body-generated lee wave, the second type is generated by the swirling motion

of the propeller and is also deterministic, however transient, in nature. The

third type was a random like field of waves that occurred during what they

called “the collapse” of the wake under the influence of buoyancy forces.

Using a series of shadowgraph images they estimated the r.m.s. of the heights

of turbulent puffs/bursts at the convoluted wake boundary and showed that,

under the influence of buoyancy, they “collapse”, in the sense of reaching a

nearly constant value, upon initial violent growth in the near field. They fur-

ther hypothesized that the turbulent kinetic energy is transferred back to po-

tential energy and hence to the observed random internal wave field when a

local turbulent Froude number (based on the r.m.s. turbulent velocity and the

turbulent integral scale) approaches unity. In an attempt to isolate the different

components of the wave field, they found that the linear theory successfully

predicted the body-generated/lee waves but failed to accurately predict the

two other components. They remarked that the process of IGWs generation in

the wake of the body is inherently nonlinear although the subsequent propa-

gation of the waves may possibly be represented by linear theory. Accordingly,

they concluded that a fully nonlinear numerical simulation is needed to accu-

rately resolve the complex process of generation and emission of the random

component of the wave field.

Using a novel laser induced fluorescence technique (see Hopfinger et al., 1991)

to measure the dispalacement of isopycnal surfaces in a horizontal plane out-
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side the turbulent region caused by the passing of IGWs , Bonneton, Chomaz

& Hopfinger (1993) found that the observed IGW field transitions from a lee-

wave (Fr . 4.5) to a random-wave dominated field (Fr & 4.5), indepen-

dently of Reynolds number, at least in the range covered by their experiments

(380< Re < 30, 000). By tracking the evolution of the wave field on a horizontal

plane below the center line, it was clear that the wave emission persisted for

much longer for an experiment where Reynolds number was increased by a

factor of 10 at the same Froude number. They suggested that the wave motion

at high Reynolds number possesses more energy than at low Reynolds num-

bers.

The vertical displacement amplitude of the lee waves measured by Bonneton

et al. (1993) decayed like 1/F, in agreement with the linear theory, whereas the

random wave field’s amplitude grew according to a purely empirical ∼ Fr2

law with a cross-over of the amplitude of the two types of waves, where the

random wave field starts to dominate the measured wave field, occurring at

Fr ≈ 4.5. As Re in their experiment (where the velocity of the sphere is the only

parameter that is varied between different experiments) is proportional to Fr

through Re = Re(1) Fr where Re(1) is the Reynolds number corresponding to

Fr = 1; the effects of Fr and Re are not isolated. They nevertheless argue that

Re dependence should be weak as it should be proportional to the scale of the

energy containing eddies at the onset of collapse that is Re independent.

Finally, with a large scatter in the measured horizontal wavelengths, they show

that the wavelength of the random wave field, in agreement with the impulsive

wave source theory, decays roughly as 1/Nt which somehow appears to overes-

timate a dominant inferable decay rate regardless of the large scatter found in
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their data. The waves that arrived first at the measurement plane had a wave-

length λH = 4R and the angle that isophase lines made with the vertical θ was

= 55◦; that is the angle that maximizes the displacement amplitude according to

Lighthill’s theory for internal waves generated by a point disturbance Lighthill

(1978) and Zavol’Skii & Zaitsev (1984). By plotting the energy spectrum of the

vertical velocity at a fixed downstream location, they further show there is a

dominant frequency corresponding to a Strouhal number, close to that of the

spiral mode of the wake, S t = 0.17, at which the random waves are emitted,

presumably by periodically generated turbulent bursts.

For a non-uniformly stratified fluid, Robey (1997) performed experiments to

investigate the internal wave field generated by a sphere towed below a ther-

mocline. In agreement with Bonneton et al. (1993), where the stratification was

uniform, he determined a similar transition Froude number Fr = 4 between

the lee wave and the random wave dominated regimes. In addition to the

experiments, he developed a numerical model based on the linearized equa-

tions of motion by including a distribution of sources and sinks which requires

knowledge of the source geometry (diameter and length) and its speed for its

initialization. For the wake generated random waves, he assumed the source

to be a large scale turbulent eddy. He estimated the eddy length, diameter and

velocity scales based on resonance arguments (Freddy = 2π Ueddy/NLeddy = 1).

Specifically, he assumed a Strouhal number S t = 0.2 along with unstratified

wake scaling to estimate the characteristic eddy diameter and velocity. He

found that the resonant eddies are actually located in the near field justifying

the use of unstratified wake scaling laws. It is perhaps perplexing and self-

contradictory that the resonant eddies can be claimed to occur in the near wake
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were the turbulence is presumably active at all scales especially at high enough

Re and Fr which is the case in many of his reported experiments. By initializing

the numerical model using the characteristics of the resonant eddies, he found

that the numerically calculated wave amplitudes are in reasonable agreement

with the experimentally determined amplitudes. Unlike the Fr2 scaling for the

random wave field obtained by Bonneton et al. (1993) he found that the slope

was indeed closer to linear than a quadratic.
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CHAPTER 2

SCOPE AND OBJECTIVES OF THE THESIS

2.1 Working hypotheses

The research work for this thesis is motivated by the more general need for un-

derstanding the dynamics of generation, propagation and breakdown of IGWs

in the ocean and atmosphere. The dynamics of these processes often exhibit

highly nonlinear and complex wave-wave, wave-shear flow, wave-turbulence

interactions in the presence of non-uniform stratification. Accordingly, fully

nonlinear controlled numerical simulations of the governing equations over as

broad range of scales as possible become a must. The notion of a controlled nu-

merical simulation derives from the additional advantage that numerical sim-

ulations offer over experimentation, that is the ability to easily vary certain pa-

rameters independent of each other; isolate the effects of certain parameters or

individual processes that often coexist in the laboratory; and lessen the impact

of undesirable processes on the main phenomena being studied.

The specific context in which we seek to understand these dynamics is the

random wave field generated in the stratified turbulent wake of moving ve-

hicles (such as submarines) in the ocean or bottom topography (seamounts). It

constitutes half of the research work presented in this thesis. The robust under-

standing of the highly nonlinear processes leading to the generation of these

waves, at operationally and oceanographically relevant conditions, and the ac-

curate characterization of their properties (space and time scales; group veloc-

ities, amplitudes and potential for breaking) can bear significant implications

on the detectability of these vehicles. From an oceanography point of view,
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understanding internal wave generation by turbulence and accurate quantifi-

cation of the energy flux associated with these waves enables assessment of

their role in the evolution of the turbulence itself and also their impact on large

scale circulation models.

2.2 Open questions: Wake-generated internal gravity waves

The first half of this thesis is thus mainly concerned with the numerical simu-

lation of the IGWs that are generated by the turbulent wake of a towed body in

a stratified fluid and the accurate characterization of their properties. Section

(1.10) has already shed some light on the shortcomings of the few available,

mainly experimental, studies that focuses on the random wave field compo-

nent of the wake generated waves, namely:

• Interpretation of the results often relies on the use of simplified models

such as the impulsive wave theory and the linearized source sink type

models that are often initialized using ad-hoc assumptions about the un-

derlying structure and dynamics of the wave generating source.

• The absence of a systematic study that isolates the effects of Re and Fr.

Usually the two parameters are related in the laboratory experiments as

they rely on varying either the characteristic length scale or the velocity

of the towed body which changes both parameters at the same time.

• The need for pushing the envelope with the maximum attainable Re and

Fr is often dictated by the available laboratory space. Specifically there is

a need to test the hypothesis that wave emission at high Re can be stronger

and more prolonged relative to a lower Re experiment, as a result of the
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establishment of a prolonged highly energetic NEQ regime that was re-

cently confirmed by the numerical simulations of Diamessis et al. (2010b).

• Since the IGW field emitted by the turbulence is random-like it comprises

many wavepackets with different sizes, component wavelengths, ampli-

tudes and orientations that constantly interfere with one another leading

to changes in their amplitudes, scales, two issues have to be addressed

that do not seem to have been adequately addressed by the limited body

of literature that focuses on these waves:

1. Characterizing the random-wave field should be based on the statis-

tics of the desired quantities that are derived from a representa-

tive ensemble that is sampled over as large a part of the domain

as possible. Hence reporting the wave properties at one spatial lo-

cation/time is meaningless as it does not ensure repeatability over

identical realizations of the flow of the reported quantities.

2. Only energetically dominant wavepackets need to be sampled.

Weak waves will quickly decay close to their generation sites and

hence do not represent the characteristics of the waves which will

eventually be radiated into the surrounding medium.

• Fourier transforms have been extensively used in many of the studies

reviewed in section (1.10,1.9) to breakdown the measured signal into its

Fourier components. Since the Fourier transform is based on globally

defined trigonometric basis functions, it is implied that the measured

signal can at least be approximated as quasi-periodic in both space and

time. Periodicity of the signal in turn implies that the wave source is in-

finitely large in size and is persistent over time; two conditions that are

clearly violated especially for wake generated waves, as the turbulence
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(i.e. the source of the waves) is localized in space and is decaying over

time (The transitory nature of the forcing is even more so at the low Re

where wave radiation occurs only during a fraction of the relatively short

NEQ regime). Continuous wavelet transform (CWT) is the most suitable

candidate tool for the analysis of localized signals as they are naturally

based on localized basis functions (Addison, 2002).

2.3 Open questions: Numerically forced internal gravity

waves

The second half of the thesis focuses on understanding the intricate dynam-

ics of IGW interactions with their environment. Specifically, wave steepening

and breakdown near a critical level was the original motivation for this in-

vestigation. The first natural step towards achieving this ultimate goal is to

implement a numerical wave forcing that will generate a large amplitude IGW

packet with well-defined characteristics (wavelength, frequency, group veloc-

ity..etc) that preserve its structure and amplitude both near its generation site

and during its propagation towards the interaction region. The mechanical

forcing approach (Slinn & Riley, 1998a) seems to be one of the best possible

candidate techniques that is especially suitable for high-order spectral element

based codes such as the one used in this thesis.

As we are going to demonstrate in chapter (6), we found that the generated

IGW packet gets progressively distorted near its rear end and its amplitude

gets weaker through the generation of a localized residual horizontal mean

flow component in the forcing region that non-linearly interacts with the prop-
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agating wave packet and leads to modulations of its structure and decay of

its amplitude. This phenomenon has only been recently reported by Zikanov

& Slinn (2001) who did not give clear explanation for its underlying cause as

it was not the focus of their study. It remained unclear as to why the forma-

tion of residual mean flow component appears to have been overlooked by the

existing body of literature on the dynamics of IGWs. We argue that:

1. As most of the previous theoretical studies focused on either plane or

quasi-plane IGWs, it is reasonable to assume that the main driver for the

generation of a localized mean flow component is the strong vertical lo-

calization.

2. The reason why it is hard to observe such a mean flow in the laboratory is

because wave tanks often have lateral boundaries and thus the formation

and sustenance of a mean horizontal flow is not possible.

3. Another potential reason for the lack of experimental evidence is that

waves generated in the laboratory are localized in the horizontal as well

as in the vertical whereas the forcing we are focused on is horizontally

periodic. For a localized wavepacket a mean flow can only exist over

the horizontally limited extent of the wavepacket and hence the effects of

horizontal localization on the formation of a residual mean flow need to

be investigated.

2.4 Specific objectives: Wake-generated internal waves

The first half of the thesis focuses on the wake-generated IGWs. The primary

objective of the study is to investigate the generation and evolution of the IGW
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field emitted by the turbulent wake of a towed sphere in a uniformly stratified

fluid and the possible connection between the wake evolution during the NEQ

and the Q2D regimes and the observed characteristics of the emitted waves

during the respective stages. Specifically, we aim to determine the character-

istics of the wake emitted IGWs (length scales, frequencies, vertical group ve-

locities and amplitudes) in the near field of the turbulent wake. We will use

the two dimensional Arc and Morlet2D CWT techniques discussed in chapter 4

and capitalize on their inherent capabilities of optimally revealing simultane-

ous space-scale information to understand the spatial distribution of waves at

different scales and the temporal distribution of the frequencies/propagation

angles of such waves. The study is mainly driven by the following fundamen-

tal questions that have not been systematically studied in previously reported

experiments and numerical simulations, namely:

• What is the effect of Re and Fr on the observed characteristics of the

waves? Specifically, how are the initial wave length scales and frequen-

cies and their subsequent decay rates depend on both parameters? In

addressing this question, it is of interest to cover a broad range of Re and

Fr which enable conservative extrapolation of the results to navally rele-

vant operating conditions of under water vehicles and to be able to vary

one parameter independent of the other.

• Will the prolongation of the NEQ regime and the occurrence of instabil-

ities and intermittent turbulent events in the late Q2D regime at high Re

(recently verified, numerically, by Diamessis et al. (2010b)) lead to a con-

comitant prolonged wave emission relative to a low Re simulation?

• Are there preferred propagation angles? If indeed there are preferred di-

rections, how could their selection be explained? and how do they de-
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pend on Fr and Re?

• What is the potential for breaking of the emitted waves and how depen-

dent is it on Re and Fr?

2.5 Specific objectives: Numerically forced internal gravity

waves

In this study, we focus on the second main theme of the thesis; the forced nu-

merical generation of internal gravity waves with predefined characteristics.

So far, no systematic study has been published, which is aimed towards un-

derstanding the underlying cause of residual mean flow formation associated

with generation of large amplitude IGW packet that is strongly localized in the

vertical, its impact on the long-time evolution of the wave field and the identifi-

cation of possible mean flow containment mechanisms. Most previous numer-

ical studies have focused on the interactions between wave and wave-induced

mean flow for quasi-plane moderate to large amplitude IGW packets intro-

duced as initial conditions (Sutherland, 2001, 2006a,b). Thus, our fundamen-

tal working hypothesis is that additional nonlinear effects may emerge when

combining strong vertical localization, large wave amplitude and possibly fi-

nite duration forcing all of which may force strong adjustment of the solution

of the fully nonlinear governing equations away from their linear counterpart

and, as a result, may non-trivially alter the subsequent evolution of the wave

field.

We first examine the near-source distortion of a forcing-generated vertically

localized IGW packet as a function of stratification strength and degree of hor-
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izontal localization. Motivated by the insight originally offered by Zikanov &

Slinn (2001), we then use scaling arguments to identify the dependence of the

magnitude of the associated mean flow on wave steepness, degree of vertical

localization and degree of wave hydrostaticity. The understanding gained en-

ables the design of efficient mean flow-containment techniques which allow the

mechanical forcing-driven numerical generation of a well-defined IGW packet

which can propagate robustly towards a nearby interaction region. The effec-

tiveness of the proposed techniques is demonstrated through their application

to the simulation of the critical level interaction of an IGW packet.

Since mechanical forcing is directly generalizable to the generation of continu-

ously forced IGW trains, the relevance of our findings to continuously forced

numerical simulations and the laboratory is also discussed. Finally, the ques-

tion is posed whether a robust large-amplitude, vertically localized IGW packet

can indeed be generated and, moreover, propagate sufficiently far from its ori-

gin in the atmosphere or ocean while maintaining its original structure and

amplitude.
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CHAPTER 3

SPECTRAL MULTIDOMAIN PENALTY SOLVER BASICS

3.1 Governing Equations

We are primarily interested in examining the dynamics of generation, evolution

and propagation of IGWs in a uniform stably stratified fluid. The excitation of

the waves will be studied in two contexts:

1. “Natural” excitation through what is believed to be resonance between

the turbulent eddies and the stratified medium in which they ex-

ist (Gilreath & Brandt, 1985; Robey, 1997).

2. “Forced” excitation where a modelled wave generator imparts a periodic

force to the medium.

The governing equations in both contexts are the Navier-Stokes equations un-

der the Boussinesq approximation :

∂u
∂t
= −1

2
[u · ∇u + ∇(u u)] + Fg

︸                           ︷︷                           ︸

N(u)

− 1
ρ0
∇p′ + ν ∇2u

︸︷︷︸

L (u)

, (3.1)

∂ρ′

∂t
= −∇ · (u(ρ′ + ρ(z))) + κ∇2(ρ′ + ρ(z)) , (3.2)

∇ · u = 0, (3.3)

where Fg = −g
ρ′

ρ0
k̂. (3.4)

The non-linear term (N(u) in 3.1) is written in the skew-symmetric form to min-

imize aliasing effects in the numerical solution (Boyd, 2001). The quantities p′
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and ρ′ are the perturbations of the pressure and the density from their respec-

tive (mean) reference values, which are in hydrostatic balance (see Diamessis

et al. (2005)). In the first context, the governing equations are not modified and

the wave generation occurs during the evolution of the solution from a set of

initial conditions representing a turbulent wake flow behind a towed sphere

(see chapter 5 for details). In the second context, the right hand side of the mo-

mentum and density equations are supplemented by wave generating forcing

terms Fu, Fρ.

As a result of the Fourier spatial discretization in the horizontal direction(s),

the boundary conditions are limited to periodic velocity and density fields; an

assumption that will be justified and elaborated on in the context of the individ-

ual simulations being discussed. Mathematically this is expressed as (assuming

a three dimensional rectangular computational domain):

(u, v,w, p′, ρ′))(x, y, z, t) = (u, v,w, p′, ρ′)(x + Lx, y, z, t), (3.5)

(u, v,w, p′, ρ′))(x, y, z, t) = (u, v,w, p′, ρ′)(x, y + Ly, z, t), (3.6)

where Lx and Ly are the dimensions of the rectangular computational domain

in the (horizontal) x, y directions, respectively. Also, in all the simulations re-

ported in this thesis, the bottom boundary is a solid wall with a no-slip bound-

ary condition:

u(x, y, 0, t) = 0, v(x, y, 0, t) = 0, w(x, y, 0, t) = 0 , (3.7)

whereas the top boundary is a free-slip (stress-free) non-deformable surface:

∂u
∂z

∣
∣
∣
∣
∣
(x,y,Lz,t)

= 0 , w(x, y, Lz, t) = 0 , (3.8)
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(Lz being the domain height) and finally the density perturbations are assumed

to vanish at both vertical boundaries:

ρ′(x, y, 0, t) = ρ′(x, y, Lz, t) = 0 . (3.9)

In the next section we review the basics of the numerical solver used in the

study. We first discuss the splittng algorithm for solving the system of gov-

erning equations. We then elaborate on the spatial and temporal discretization

and then summarize the stabilization techniques employed by the solver to

deal with the typically under-resolved simulations of high Reyonlds number

flows.

3.2 Temporal discretization scheme

For the temporal discretization of eqs. (3.1)-(3.3), a high-accuracy pressure pro-

jection scheme is used (Karniadakis, Israeli & Orszag, 1991). According to this

scheme, if one integrates eqs. (3.1)-(3.3) in time from level tn to tn+1 the follow-

ing semi-discrete equations, decomposed into three fractional steps for ũ, are

obtained (Diamessis, Domaradzki & Hesthaven, 2005):

û −∑Ji−1
q=0 αqun−q

∆t
=

Je−1∑

q=0

βqN(un−q) , (3.10)

ˆ̂u − û
∆t

= −∇φn+1 , (3.11)

γ0un+1 − ˆ̂u
∆t

= νL (un+1) . (3.12)

The values of the coefficients αq, βq and γ0 for the 3rd order backward

differentiation-stiffly stable (BDF3-SS3) scheme of equations (3.10)-(3.12) may
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be found in Karniadakis et al. (1991). The quantity φn+1:

∫ tn+1

tn

∇p′dt = ∆t∇φn+1 . (3.13)

is an intermediate scalar field that ensures that the final velocity un+1 is incom-

pressible. In eq. (3.11), it is assumed ∇· ˆ̂u = 0 and the Poisson equation is solved

for the pressure:

∇2φn+1
= ∇ ·

( û
∆t

)

. (3.14)

The boundary conditions for ũ (3.7)-(3.8) are enforced in eq. (3.12). Equa-

tion (3.14) utilizes the high-order accuracy dynamic boundary condition (Kar-

niadakis, Israeli & Orszag, 1991):

∂φn+1

∂z

∣
∣
∣
∣
∣
b
=

Je−1∑

q=0

βqN(wn−q)
∣
∣
∣
∣
∣
b
−

Je−1∑

q=0

βq[ν∇ × (∇ × w)]n−q
∣
∣
∣
∣
∣
b
. (3.15)

where |b denotes z = 0,H and the coefficients βq have the same value as in the

SS3 scheme of eqs. (3.10)-(3.12).

The splitting procedure for ρ′ consists of two steps analogous to eqs. (3.10)

and (3.12). The boundary conditions (3.9) are enforced in the corresponding

diffusive step.

This splitting approach combines third-order stiffly stable and backward-

differentiation schemes with a dynamic high-order boundary condition for the

pressure. Thus, O(∆t2) is ensured for the velocity and the pressure (Guermond

& Shen, 2003) and the maximum possible value of stable timestep is attain-

able (Karniadakis, Israeli & Orszag, 1991).

For a given simulation, the initial computational timestep ∆t is chosen as such
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that the CFL stability criterion is obeyed in all three spatial directions for a 3rd

order stiffly stable scheme. The following requirements are imposed:

∆t
umax

∆x
< 0.18, ∆t

vmax

∆y
< 0.18, 0.7 < ∆t

[ w
∆z

]

max
< 0.9 . (3.16)

The particular choice of the initial time step depends on the minimum relevant

physical time scale for the problem under consideration. For the towed sphere

simulations reported in chapter 5, the initial time step is taken to be ∼ 3−4%of

the advection time scale D/U. The adaptive timestepping scheme is activated

whenever the timestep reaches the lower or upper bound of the vertical CFL

criterion and the timestep is increased or decreased by a factor of 1.25, respec-

tively. In all of the problems considered in this thesis, the buoyancy period of

the stratified medium is the maximum characteristic time scale and we thus set

the maximum allowable timestep to be ∆tmax = 2π/(60N) to adequately resolve

it.

3.3 Spatial discretization scheme

In the periodic horizontal direction, Fourier spectral discretization is used with

N̂x and N̂y Fourier modes in the longitudinal and spanwise direction, respec-

tively. In the vertical direction, the computational domain is partitioned into

M subdomains of variable height Hk (k = 1, ... M) and fixed order of poly-

nomial approximation N̂ (see Fig. 3.1(a) and (b)). The total number of verti-

cal grid points is N̂z = M(N̂ + 1) + 1. Within each subdomain, a Legendre

spectral collocation scheme (Boyd, 2001) is used. Subdomains communicate

with their neighbors via a simple patching condition (Diamessis, Domaradzki

& Hesthaven, 2005). The multidomain scheme allows for increased resolution

of vertically localized dynamic regions such as the core of the turbulent wake or
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(a)

(b)

Figure 3.1: Exploded view of the wake core region of an Oxz section of
the numerical grid employed in the simulations of a stratified
turbulent wake at (a) Re = 5 × 103 (where M = 7 subdomains
of order of approximation N̂ = 24, with subdomain origins
located at z/D = −6,−3.17,−1.67,−0.5, 0.5, 1.67 and 3.17) (b)
Re = 105 (where M = 13 subdomains of order of approx-
imation N̂ = 40, with subdomain origins located at z/D =

−6,−3.67,−2.33,−1.33,−0.8,−0.4,−0.13, 0.13, 0.4, 0.8, 1.33, 2.33,
and 3.67).
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the critical level region in the IGW shear flow interaction, while also resolving

adequately, yet not excessively, the less active regions of the physical domain.

The resolutions used in this thesis aim to capture the dynamically relevant

scales of motion while accommodating available computational resources and

the need for rapid run turnaround. As a result, the available numerical reso-

lution at higher Reynolds numbers is not sufficient to capture both the large,

energy containing and small, dissipative scales of turbulence. With the bulk

of the numerical resolution devoted to large scales, the effects of molecular

viscosity which are active in the range of small, dissipative scales cannot be

resolved. Attempts to solve Navier-Stokes equations in such a case will result

in an underresolved simulation. When spectral schemes, which are inherently

non-dissipative, are used in underresolved simulations, the resulting Gibbs os-

cillations are compounded by aliasing effects driven by the non-linear term,

lead to catastrophic numerical instabilities (Gottlieb & Hesthaven, 2001).

To overcome such difficulties either the governing equations must be modified,

e.g., by introducing an explicit subgrid-scale (SGS) model term as is commonly

done in LES, or by modifying the numerical method of solution by introducing

procedures that control and prevent numerical instabilities. We follow the lat-

ter approach using two techniques that are designed to ensure stability of the

numerical solution while preserving high accuracy: explicit spectral filtering

and penalty schemes.
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3.4 Stabilization methods: spectral filtering and penalty tech-

niques

Penalty methods consist of collocating a linear combination of the equation and

boundary/patching conditions (the latter multiplied by a penalty coefficient)

at the boundaries/subdomain interfaces, respectively (Hesthaven & Gottlieb,

1996; Hesthaven, 1997). A smooth transition from the subdomain interface to

its interior is thus possible, enabling stable computation of the high Re “inter-

nal” (internal with respect to the subdomain boundary) dynamics of the flow

without having to resolve the thin numerical/viscous physical boundary layers

or internal sharp gradients at subdomain interfaces (Diamessis, Domaradzki &

Hesthaven, 2005). Spectral filtering consists of the explicit application of an or-

der p low-pass filter function to the spectral (modal) expansion of the solution.

In this study, an exponential filter (Gottlieb & Hesthaven, 2001) is used:

σ(k) = exp
[

− α
( k
kc

)p]

(3.17)

where p is the filter order and α = −ln(εM) with εM being the machine preci-

sion. In Legendre space, the filter function σ(k) multiplies the k-th Legendre

modal coefficient and kc represents the index of the highest resolved mode (see

Fig. 3.2). In contrast, in Fourier space, for the purpose of implementing effi-

cient two-dimensional filtering, k is elected to represent the magnitude of an

individual Fourier wavenumber pair (kx, ky), i.e. k = (k2
x + k2

y )1/2 and kc is cho-

sen as kc ≡ [(kx,max
2
+ky,max

2)]1/2, i.e. the maximum resolved Fourier wavenumber

pair magnitude for the given domain dimensions. In terms of the temporal dis-

cretization summarized in §3.2, the penalty method is applied at two different

levels (explicit advancement of nonlinear terms and implicit treatment of vis-

cous terms) in the incompressible Navier-Stokes equations. Legendre spectral
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Figure 3.2: Exponential filter functions σ(k/kC) for the four different filter
orders p = 6,8, 10, and 20 used in this study. In Legendre
space, k and kC represent the mode number and total number of
available modes, respectively. In Fourier space, k and kC repre-
sent the two-dimensional wavenumber vector magnitude and
the corresponding maximum value over all resolved horizon-
tal wavenumbers, respectively

filtering of the same order p is applied after all three fractional steps. Fourier

spectral filtering is applied only after advancing the non-linear terms to sup-

press the accumulation of high-wavenumber numerical noise driven by alias-

ing. Legendre filters have a negligible influence at the subdomain interfaces

(Gottlieb & Hesthaven, 2001), where the influence of the penalty method is the

strongest. Thus, the two stabilizing techniques complement each other in en-

abling numerical stability through the entire extent of a spectral subdomain.

As a final safeguard against numerical instability, adaptive interfacial aver-

aging is used in the vertical direction (Diamessis, Domaradzki & Hesthaven,

2005).
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The numerical technique employed in this thesis may be viewed as an implicit

large eddy simulation, where the stabilization is not provided by the trunca-

tion error of the numerical discretization (which is exponentially small for a

spectral method (Boyd, 2001)) but by the spectral filter, which may viewed as

an intrinsic component of the numerical discretization in the case of under-

resolved simulations. As with all large eddy simulation techniques, one must

of course, be aware that simply guaranteeing numerical stability does not guar-

antee physically correct dynamics of the resolved scales. Therefore, the results

of the simulations must be always compared with experiments and simula-

tions, either fully resolved DNS, or LES performed with other models, to gain

confidence that the method is not only numerically stable but also physically

correct (Diamessis, Spedding & Domaradzki, 2010b).
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CHAPTER 4

ON THE CONTINUOUS WAVELET TRANSFORM AND ITS USE IN

FLUID MECHANICS

4.1 Spectral versus physical representation of signals

The purpose of spectral analysis is to breakdown a given signal into the rela-

tive contributions of its basic wavelength/frequency components. So, unlike

proper orthogonal decomposition (such as the one described in (Diamessis,

Gurka & Liberzon, 2010a)) where a signal is decomposed into a hierarchy of

eigenmodes with arbitrary geometry, in spectral analysis, the signal is often de-

composed into the sum of simple sinusoids with different weights/amplitudes.

For the purpose of the following discussion we will assume that the signal is

temporal rather than spatial such as a velocity time series measured at a point

inside a fluid. The mathematical analyses are the same for both types of signals

and the transforms developed are implemented in exactly the same way.

The Fourier transform has been used extensively in the field of signal and im-

age processing to understand, breakdown and manipulate, if necessary, the

frequency content of temporal signals. A Fourier transform pair representing

the transform from the physical (spectral) to the spectral (physical) domain is

defined as

F(ω) =
1
√

2π

∫ ∞

−∞
e−iωt x(t) dt, (4.1)

x(t) =
1
√

2π

∫ ∞

−∞
eiωt F(ω) dω, (4.2)

where x(t) is the temporal signal and F(ω) is its Fourier transform. As the trans-

form is only a function of the frequency, all time domain information is lost. As
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such, the Fourier transform is not capable of finding where, in a signal, do cer-

tain component frequencies occur and hence it is mostly suited for stationary

or periodic signals where the frequency content of the signal does not change

over time. A song for example is a non-stationary signal where the frequency

content changes dynamically as it progresses between high and low notes.

As a highly localized signal in the time domain corresponds to a broadband

structure in the frequency domain, the requirement for a highly localized tem-

poral signal precludes localizing in the frequency domain. This is the basis for

the Heisenberg uncertainty principle in signal spectral analysis which simply

means that obtaining a sharp resolution in the time domain is in competition

with having a high resolution in the frequency domain. An intuitive extension

to the Fourier transform that attempts to retain some of the time domain in-

formation is the Gabor transform (also called the short-time Fourier transform)

introduced by Gabor (1946). The transform is based on modifying the Fourier

transform kernel e−iωt by multiplying it by a localized function g(τ − t) (typi-

cally a Gaussian envelope with a characteristic width a) that acts to filter the

temporal signal over a fixed window width ( the Gaussian width a), that is

G(t, ω) =
1
√

2π

∫ ∞

−∞
e−iωτg(τ − t)x(τ) dτ. (4.3)

As the parameter t is translated along the time axis one obtains a full time-

frequency characterization G(t, ω) from each sub-window.

An obvious limitation to the Gabor transform is that its resolution in frequency

is dependent on the window width a. The window width sets the maximum

resolvable period by the Gabor transform. Simply, any spectral content with a

period exceeding a will not be captured. In fact the uncertainty principle dic-

tates that the shorter in time the window width is (and hence the higher the
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time resolution is), the less frequency content will be retrievable.

The continuous wavelet transform (CWT) developed by Morlet & Grossman

(1984) generalizes the ideas of translation and windowing in time of the Gabor

transform by introducing an additional parameter into the transform; the win-

dow size or “scale” a. The window size/scale is varied over as broad a range

as possible. The large scales capture the slow frequency components and the

small scales capture the highly localized dynamical variations in the signal.

The CWT relies on a wavelet function ψ(t) that satisfies certain mathematical

properties. As the name suggests, a wavelet is a function that is localized in

time. The function is translated along the time axis, stretched and compressed

in scale and convolved with the signal x(t) to unravel the signal’s spectral con-

tent at all times and scales. There is a large number of wavelet functions to

choose from for use in temporal data analysis. The wavelet function is de-

signed such that it has properties that suit a particular subset of applications

depending on the nature of the signal and the required manipulations. In the

next section we review the mathematical underpinning of the CWT and the

basics of its numerical evaluation.

4.2 Fundamentals of the 1-D continuous wavelet transform

The fundamentals of CWT are lucidly explained by Addison (2002) in a book

that mainly addresses the applied science and engineering community. For a

more detailed mathematical account of the subject, the comprehensive refer-

ence by Antoine et al. (2004) is highly recommended.
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Figure 4.1: Examples of mother wavelets. (a) Gaussian wave (first deriva-
tive of a Gaussian). (b) Mexican hat (second derivative of a
Gaussian. (3) Haar. (4) Morlet (real part)

Examples of wavelet functions (also called mother wavelets (Addison, 2002))

are illustrated in Fig. 4.1. The Morlet basis function is the most commonly used

mother wavelet in the fluid mechanical applications as it can represent any fre-

quently encountered localized wavepackets/disturbances with a well defined

energetically-dominant length scale. It can be written as

ψ(t) =
1
π1/4

exp(i 2π f0t) exp
(

−t2/2
)

, (4.4)

where f0 is the central frequency of the sinusoidal function which controls the

number of oscillations contained within the Gaussian envelope. Two types of

manipulations of the mother wavelet; translation and rescaling are illustrated

in Fig. 4.2. Translation involves sliding the center of the wavelet along the

time axis while rescaling involves stretching/compressing the wavelet over
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Figure 4.2: Basic manipulations of a Morlet mother wavelet. (a) Mother
wavelet. (b) Translated wavelet. (c) Rescaled (dilated) wavelet.
(d) Translated and rescaled wavelet.

the time axis without changing its shape. The manipulated wavelet is denoted

ψ [( t − b) /a] where b is the parameter representing the translation and the scale

a is the parameter controlling the stretching and compressing of the mother

wavelet. As the wavelet expands on the time axis (e.g. compare the wavelet

in Fig. 4.2(c) to that in (b)) its spectral content contracts and hence the wavelet

scale is inversely proportional to the wavelet characteristic frequency.

In order for a function to qualify as a wavelet it must meet certain mathematical

criteria (Addison, 2002)

1. The wavelet must have a finite energy

E =
∫ ∞

−∞
|ψ(t)|2 dt < ∞, (4.5)
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2. The wavelet has to have a finite admissibility constant Cg

Cg =

∫ ∞

0

∣
∣
∣ψ̂( f )

∣
∣
∣
2

f
d f < ∞, (4.6)

where ψ̂( f ) is the fourier transform of the wavelet. This condition implies

that the wavelet has no zero frequency component i.e. ψ̂(0) = 0.

3. For complex wavelets (like Morlet), the Fourier transform must both be

real and have a zero negative frequency content.

Now the CWT of a continuous temporal signal with respect to the wavelet func-

tion is defined as

T (a, b) =
1
√

a

∫ ∞

−∞
x(t) ψ∗

(

t − b
a

)

dt, (4.7)

where the asterisk denotes the complex conjugate of the wavelet function. In

mathematical terms this is called a convolution. Addison (2002) describes the

CWT as a “mathematical microscope” where b is the location on the time series

being “viewed” and a is the magnification level. The inverse operation is then

defined through

x(t) =
1

Cg

∫ ∞

−∞

∫ ∞

0
T (a, b) ψ

(

t − b
a

)

da db
a2

, (4.8)

which recovers the signal from its transform by integrating over all possible

scales and locations. Limiting the integration to a subset of scales amounts to a

basic scale-based filtering operation.

Computationally, the CWT is evaluated using the often analytically known

Fourier transform of the wavelet along with a numerically computed Fourier

transform of the signal through (Addison, 2002)

T (a, b) =
∫ ∞

−∞
x̂( f ) ψ̂∗a,b ( f ) d f , (4.9)
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where ψ̂∗a,b is the complex conjugate of the Fourier transform of the dilated and

translated mother wavelet.

The interpretation of the CWT relies heavily on understanding the local

changes in the magnitude of the transform over the duration/extent of the sig-

nal. Large values of the CWT signifies resonance at the corresponding scales.

Additionally, if the wavelet function is complex, the CWT will have the addi-

tional advantage of revealing local phase information at all possible locations

and scales. Accordingly, using Morlet, as an example for a complex wavelet, it

is easy to identify not only the local scale changes but also local transitions and

discontinuities in the signal’s phase. The modulus and phase of the CWT are,

respectively,

|T (a, b)| =
√

[Re(T (a, b))]2 + [Im(T (a, b))]2, (4.10)

φ(a, b) = tan−1{[Im(T (a, b))]/[Re(T (a, b))]}, (4.11)

where [Re(T (a, b))] and [Im(T (a, b))] are the real and imaginary part of the

wavelet transform respectively.

While understanding the behavior of the phase of the CWT for real signals of-

ten proves to be an involved task it can (especially true for higher dimensional

signals) sometimes reveal very important patterns at a sub-class of scales even

in the presence of significant noise levels (such as the phase dislocation sites in

the vorticity structures described in Dallard & Browand (1993)). For the sake

of simplicity, all interpretations of CWTs used in this thesis are based on check-

ing the magnitude of the transform for local resonance. As 2D/plane data is

often readily available from experiments and numerical simulations, it is nat-

ural to consider extending the utility of the current CWT framework to two

dimensions and hence this is the subject of the next section.
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4.3 2-D continuous wavelet transforms

Separation of the amplitude and the phase of a signal x(t) containing multiple

frequencies can be achieved by defining a complex function

X(t) = x(t) − iH(x(t)), (4.12)

where x(t) = Re[X(t)] and H(x(t)) is the Hilbert transform of x(t);

H(x(t)) =
∫ ∞

−∞

x(τ)
π(t − τ)dτ. (4.13)

The instantaneous envelope amplitude and phase of the signal are, respectively,

A =
√

x2 + H(x)2, (4.14)

φ = tan−1 (−H(x)/x) , (4.15)

It can then be shown that (Dallard & Spedding, 1993)

f < 0⇒ X̂( f ) = 0. (4.16)

Functions satisfying ( 4.16) are called “Hardy” functions or are said to occupy

Hardy space H . Any wavelet function ψ ∈ H has a wavelet transform T (a0, b)

(a0 being a fixed scale) that exists in H and hence has an instantaneous phase

and amplitude.

Dallard & Spedding (1993) extended the concept of Hardy function to two di-

mensions by defining wavelet functions in Fourier space, paritioning the 2D

wave number plane into two partitions π1 and π2 and setting the Fourier trans-

form of the function to zero on one of the half planes. Two types of wavelets

were thus defined. In one type, the wavelet is directional-specific which means

it selects wave vectors with a preferred wave number magnitude (i.e. scale)
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and orientation. In the other type, the wavelet function is referred to as “cylin-

drical” which means it has no directional selectivity and hence it resonates with

wave vectors having a preferred wave number magnitude regardless of their

orientation.

They further defined a directional-specific wavepacket-like wavelet referred to

as Morlet2D through

ψα(~r) = exp
(

i ~κo.~r
)

exp
(

−|~r|2/2
)

, (4.17)

where ~r is an arbitrary position vector in a 2D Cartesian plane, and ~κo is a fixed

characteristic wave number vector oriented at angle α to the horizontal x axis.

The Fourier transform of Morlet2D is then

ψ̂α(~κ) = exp




−
∣
∣
∣~κ − ~κ0

∣
∣
∣
2

2




. (4.18)

Notice that Morlet2D is not strictly a Hardy function and that its zero frequency

component is not identically zero, however these conditions are almost satis-

fied for large enough
∣
∣
∣~κo

∣
∣
∣ (such as

∣
∣
∣~κo

∣
∣
∣ = 5.5 in Morlet & Grossman (1984)).

Figure (4.3) shows a Morelt2D wavelet oriented at α = 45◦ to the horizontal

axis both in the spectral (a) and physical space ((b),(c)). If the analyzed 2D sig-

nal has a clearly perceived predominant directionality that is known a priori,

Dallard & Spedding (1993) found that Morlet2D has sharper selectivity than

non-directionally based wavelets. However, if the signal contains many con-

tributions at different scales and orientations, a non-directionl wavelet would

be most valuable, otherwise an exhaustive search of resonance (i.e. local maxi-

mization of the modulus of the transform) must be conducted at multiple val-

ues of α to cover the entire wave number plane.

For this reason, Dallard & Spedding (1993) sought a wavelet with additional
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(a)

(b) (c)

Figure 4.3: Morlet2D wavelet at α = 45◦(a) Fourier transform (b) Real part
in physical space (c) Imaginary part in physical space

symmetry that is sensitive only to wave numbers at a specific scale regardless

of their orientation. They defined a symmetric real wavelet that they referred

to as Halo such that its structure in the wave number plane is symmetric in

the radial direction in which resonance occurs over an annular-like region that

is displaced from the origin by a radius κ0/a. In order to make it a Hardy

function (and thus separate the amplitude and phase information) they further

restricted the contributions in the wave number space to one half-plane leading

to the complex Arc wavelet (see Fig.( 4.4)). Mathematically, the Arc is defined
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(a)

(b) (c)

Figure 4.4: Arc wavelet: (a) Fourier transform (b) Real part in physical
space (b) Imaginary part in physical space

as

ψ̂(~κ) = exp




−

(∣
∣
∣~κ
∣
∣
∣ −

∣
∣
∣~κ0

∣
∣
∣

)2

2




~κ ∈ π1;

ψ̂(~κ) = 0 ~κ ∈ π2 (4.19)

We have used a proprietary Fortran 77 code developed by Dallard & Spedding

(1993) in which both the 1D and 2D CWT are implemented using Fourier trans-

form as explained in §4.2. A series of test cases were run in order to make sure

an independent Fortran-90 module that we developed based on the Fortran-77
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(a) (b)

Figure 4.5: Frequency doubling: (a) time domain (b) 2D contours of the
CWT modulus in the wavelet space (contour levels are arbi-
trary)

code faithfully reproduces the evolution (distribution) of spectral content over

the duration (spatial extent) of some of the well-known standard analytical test

signals.

As an example for the application of the one dimensional CWT, Fig. 4.5(a)

shows a 1D temporal signal in which the frequency of the oscillation doubles

halfway into the signal (t = 128). A complex 1D Morlet wavelet function was

chosen for the analysis with a number of scales na = n/2 = 128where n is the

signal size. Note that the characteristic period Tp of the wavelet at a given scale

a is related to the mother wavelet primary frequency f0 through Tp = a × dt/ f0,

where a is a linear index (a = 1, 2, ..., na) and dt is the time resolution of the

signal. The absolute value/modulus of the CWT in what is referred to as “the

wavelet space/domain” ( i.e. the time-scale plane (Addison, 2002)), is plot-

ted in Fig. 4.5(b) using red and blue (for maximum and minimum resonance,
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respectively) color-coding scheme. The periodicity of the signal in the time

domain is reflected as continuous bands in the wavelet space with maximum

resonance occurring at the center of the bands at the expected scales. The cen-

ter of the upper band corresponding to the larger periodicity occurs at a larger

(double) scale than the center of the lower band and the breadth of the band

(sometimes called “ the band of influence”), on a linear scale, seems to be pro-

portional to the associated resonance scale.

Finally, the visible warping of the continuous bands near the edges of the sig-

nal is a direct result of the errors introduced by the overlapping of the wavelet

“support” ( the characteristic width of the wavelet) with the left and right edges

of a finite extent signal. The length (area in 2D signals) of the signal affected

by the edge or boundary effect scales with the dilated wavelet scale (as increas-

ingly larger portion of the dilated wavelet falls outside of the signal near its

end points) and, accordingly, the accuracy of the transform is compromised at

the larger scales. Usually scales beyond n/4 are heavily contaminated by edge

effects and, as a result, should not be considered. For more test cases that fur-

ther reinforce the basic principles and demonstrate the utility of the CWT the

reader is referred to appendix A. The next sections provides a brief review of

the fluid mechanical applications of the wavelet transform.

4.4 Applications in fluid mechanics

The early comprehensive reviews by Farge (1992) and Meneveau (1991) pro-

vided a clear and rigorous explanation of the mathematical basis of the wavelet

transform, its numerical implementation and its application to the analysis and
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computations of turbulent flows. For example, Farge (1992) suggested new

diagnostics for turbulent flows based on wavelet analysis such as local scale-

based wavelet energy spectrum, local intermittency measures, space-scale con-

trast, space scale isotropy measures and a local scaling and singularity spec-

trum.

More recently Addison (2002) provided a thorough review of the applications

of wavelet transform in the general area of fluid mechanics. Some of the notable

examples mentioned therein are:

• Identification and characterization of the properties of coherent eddy

structures like those forming at the interface of two fluid layers moving

at different velocities (Bonnet & Glauser, 1994).

• Investigating the eddy structure in free turbulent jets by Li & Nozaki

(1995) and their subsequent use of a wavelet cross-correlation function

to relate two simultaneous measurements at different locations.

• Identifying the frequency of vortex shedding downstream of an elliptical

plate by Kiya & Abe (1999).

• Fluid-structure interaction problems such as the transient response of

buildings to wind storms, and bridge response to vortex shedding (Gur-

ley & Kareem, 1999).

Finally as the 2D wavelet transform framework developed by Dallard & Sped-

ding (1993) is the basic tool used in this thesis for analyzing the wake gener-

ated IGWs, it becomes important to review the applications in which Spedding

and collaborators subsequently used it. Long, Lai, Huang & Spedding (1993)

used a one dimensional complex Morlet wavelet to analyze the measured sur-
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face wave field in their experiments on the blocking and trapping of waves by

inhomogenous flow fields. They found that strong current gradient near the

blocking point (the area where the velocity of the local current is larger in mag-

nitude than that of the wave group but is opposite in direction to it) traps wave

energy and shifts the wave numbers into a regime that matches the microwave

wavelength of many remote sensing devices; a phenomenon that provides the

link between surface wave structure and strong current gradient zones.

Spedding, Browand, Huang & Long (1993) used the 2D complex wavelet

transform developed in (Dallard & Spedding, 1993) to investigate the un-

steady wind-generated surface wave field. They found that these waves have

widespread phase dislocations that persist until the initial wave field becomes

disordered in appearance. They also found that the energy in the fundamental

wavelength generated by the instability of the initially quiescent water surface

saturates over time, whereas the energy in the subharmonic components con-

tinue to increase over time. Energy in wave vectors aligned at a small angle off

the mean wind direction was also found to increase until it becomes a substan-

tial fraction of the total energy. They also discussed the possible role of phase

defects in the nonlinear energy transfer and its analogy to plane mixing lay-

ers. Dallard & Browand (1993) used the same 2D wavelet transforms to study

what they called a defect/dislocation site (a Y-shaped branching pattern) in the

vorticity structures of plane mixing layers. Interestingly, they found that a dis-

location site acts as a nucleus that initiates a rapid and localized evolution to

larger scales.

In the next chapter, we extend the applications of the 2D wavelet transform

framework developed by Dallard & Spedding (1993) to the determination of
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the spectral characteristics of the internal gravity waves generated by the tur-

bulent wake of a towed sphere in a uniformly stratified fluid. The ability of

wavelets to detect spatially localized coherent waves at different scales and

orientations and to relate these scales to their spatial locations has proven to

be most useful in understanding and characterizing the wake generated wave

field. The localization in time is also another important aspect of this problem,

especially for the low Reynolds number simulations, where the wave emission

by the turbulent wake is more transitory in nature than the corresponding high

Reynolds number simulations.
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CHAPTER 5

INTERNAL WAVE EMISSION BY A STRATIFIED TURBULENT WAKE

5.1 Problem setup

The base flow considered in this study is a stratified turbulent wake with

nonzero net momentum. Such a flow corresponds to the wake of a sphere of

diameter D towed with a velocity U in a uniformly stratified fluid with buoy-

ancy frequency N. Incorporation of the wake-generating sphere in the compu-

tational domain is a highly challenging computational task, as a spherical grid

positioned around the sphere would need to be coupled to a Cartesian grid fur-

ther downstream. Apart from being confronted with issues of sphere boundary

layer resolution at the Reynolds numbers of interest, such a spatially develop-

ing treatment of the wake would require a prohibitively large computational

degrees of freedom to capture the intermediate NEQ and far Q2D regimes of

wake evolution, two stages of prime interest for the study of IGWs generated

by the turbulent wake. Thus, as in Orszag & Pao (1974) and in the more re-

cent studies of stratified turbulent wakes (Gourlay, Arendt, Fritts & Werne,

2001; Dommermuth, Rottman, Innis & Novikov, 2002; Diamessis, Domaradzki

& Hesthaven, 2005) the computational domain and spatial discretization do

not account for the sphere and focus only on the flow generated in its wake.

Specifically, the computational domain is a three-dimensional volume inside

the wake region, centered on the wake centerline. Within this volume of di-

mensions Lx × Ly × Lz shown in Fig. 5.1 the three-dimensional and time depen-

dent wake flow field is computed. Effectively in this methodology, the compu-

tational domain may be regarded as an isolated three-dimensional block, cen-

tered around a fixed downstream location, in the wake region of a sphere that is
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Figure 5.1: Computational domain for the simulation of a stratified turbu-
lent wake with non-zero net momentum.

shot through a stratified water tank. The numerical simulation thus represents

the time evolution of the turbulent field contained within the three-dimensional

block. The coordinate axes are positioned such that (x, y = 0, z = 0) corresponds

to the wake centerline and x = −Lx/2 is at the left end of the domain. After

evolution time t the solution is interpreted as a representation for a three di-

mensional block of the wake flow at a distance X/D = Uot/D = Nt.Fr/2 down-

stream from the location of the initial block (denoted X0/D). The numerical

model is thus statistically homogeneous along the wake axis (the x direction)

but non-stationary in time. The domain is assumed to be horizontally periodic

in both directions. The periodicity in the downstream x direction is appropri-

ate as the length of the computational domain is much smaller than the total

wake length (Dommermuth, Rottman, Innis & Novikov, 2002) which ensures
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that the streamwise variation of all average quantities is negligible compared to

their variation in the other directions. The periodicity assumption in the span-

wise direction is justifiable provided the horizontal length scale of the wake

LH does not exceed a threshold value (taken as 0.15Ly, where Ly is the span-

wise dimension of the computational domain) , beyond which spurious inter-

actions with the spanwise-periodic image are possible (Diamessis, Spedding &

Domaradzki, 2010b). On account of the spanwise periodicity, internal waves

radiated by the wake will re-enter the computational domain unless the do-

main lateral boundaries are equipped with wave absorbing layers as explained

in section (5.4). The vertical boundary conditions are a no-slip bottom wall and

a free-slip (stess-free) top surface. The wake flow in the initial block is assumed

to be fully three dimensional self-similar near wake flow and for that to be en-

sured, a complex initialization procedure , the details of which are summarized

in the next section, is implemented.

5.2 Initialization

As discussed in section (5.1), the sphere is not accounted for in the computation

and the initial condition of the simulation corresponds to an approximation of

the near-wake at x/D = 2 from the sphere. Specifically, the initial mean and

fluctuating velocity profiles are constructed to represent a self-similar axisym-

metric nonstratified wake (Tennekes & Lumley, 1972; Meunier, Diamessis &

Spedding, 2006). The erroneous assumption of self-similarity this close to the

towed body is not critical for the purpose of these simulations, which focus

on the intermediate-to-late time wake. Moreover, the specific choice of initial

condition, described in detail elsewhere (Diamessis, Spedding & Domaradzki,
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2010b), is found to reproduce a physically accurate transition into the NEQ

regime, during and after which the numerical simulations exhibit power laws

for the mean flow scaling and a vorticity field structure that agree very well

with their experimental counterparts. It should nevertheless be noted that the

generation of the initial wake velocity and density fields is a complex process

consisting of two preliminary simulations before the main simulation can be

started.

The preliminary runs involve a relaxation stage where the mean and turbu-

lent velocity fields become adequately correlated and a transition stage where

the mean flow exhibits the prescribed self-similar behavior and the ambient

density profile is gradually introduced (ramped up) to minimize any spuri-

ous buoyancy-driven transients (Diamessis, Spedding & Domaradzki, 2010b).

Upon termination of the relaxation procedure, the downstream distance from

the sphere is assumed to be equal to x/D = 2. The transition run has a duration

of tU/D = 6, which sets the equivalent of downstream distance from the sphere

at the beginning of the primary simulation to be equal to X0/D = 8.

5.3 Summary of numerical simulations

This study considers results from five different numerical simulations of strat-

ified turbulent wakes with non-zero net momentum at Reynolds number,

Re = UD/ν = 5×103 and 105 and internal Froude number, Fr = 2U/(DN) = 4, 16

and 64 for Re = 5 × 103 and Fr = 4, 16 for Re = 105. Hereafter, each run will

be labeled as RxFy, where x = Re/103 and y = Fr. For all simulations, the val-

ues of U and D are the same. The Reynolds number and Froude number are

72



varied by changing the values of ν and N, respectively. At a fixed Re value, all

Fr simulations, where the computational domain dimensions are the same (see

below), use the same relaxation run. The final result of this run is used to ini-

tialize the particular transition run for the desired Fr where the mean density

gradient is ramped-up to its designated value.

As the purpose of the study is to characterize the internal wave radiation from

the turbulent wake, the total “useful” simulation time is where the wake adjusts

to the increasing effects of the buoyancy forces (i.e. the full extent of the NEQ

regime) all the way to the initial stages of the Q2D where the pancake vortices

have fully emerged and dominated the wake core. As the specific transition

point leading into the Q2D is both Re and Fr dependent, being 20 < Nt < 30

at Re = 5 × 103 and 60 < Nt < 120 at Re = 105 (see Diamessis, Spedding &

Domaradzki, 2010b), it is reasonable to expect that the period 2 . Nt . 100cap-

tures all the dynamics of the energetically significant wave radiation at all Re

and Fr relevant to this study.

As there is no need to run beyond Nt ' 100, we do not use the spanwise re-

gridding procedure that was periodically applied by Diamessis et al. (2010b)

provided LH ≤ 0.15Ly is enforced during the continuous lateral expansion of

the wake, if such a computational domain width can accommodate the ex-

pected wake growth during 2 < Nt < 100. Now, wake confinement issues

aside, by considering the imposed spanwise periodicity, the IGWs will re-enter

the computational domain and interfere with newly emitted waves. Hence, af-

ter some time, the internal wave field will not correspond to its experimental

counterpart. For this reason, the vertical and lateral domain boundaries need

to be equipped with artificial wave absorbing layers (detailed in the next sec-
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tion) to efficiently remove the internal waves from the computational domain

before they impact the boundaries and either re-enter the domain through the

lateral boundaries or reflect back towards the wake core from the top and bot-

tom boundaries and contaminate the IGW field emitted by the wake.

Finally, from a computational data analysis stand point, the domain dimen-

sions should allow a reasonable “free” propagation space for the radiated

IGW to move away from the turbulent core in order to unambiguously de-

termine their spectral characteristics and avoid undesirable contamination by

the wake turbulence. The domain dimensions (mainly dictated by Fr) are

Lx × Ly × Lz = 262
3D × 262

3D × 12D for Fr = 4, 16. On account of the increased

wake width with Fr at a given Nt, the spanwise dimension of the Fr = 64 case

is chosen to be 40D. Although a domain height Lz = 12D accommodates the

vertical extent of the wake for all Fr simulations throughout 1 < Nt < 100, the

free space available for wave propagation decreases with increasing Fr. Thus,

for Fr = 64, the domain height is increased to Lz = 20D.

The spectral multidomain grid with the streamwise direction employing a uni-

form grid is shown in (see Fig. 3.1(a) and (b)) for the R5Fr4 case. The compu-

tational domain has M = 7 vertical subdomains with constant order of poly-

nomial approximation N̂ = 24 inside each subdomain. The vertical resolution

is optimally clustered around the wake core to accurately resolve the turbulent

field and adequately capture the large scale internal wave-dominated “ambi-

ent”. For Fr = 64 simulation the number of vertical subdomains is increased

to M = 9 while the polynomial order of approximation inside the subdomains

is kept the same. Grid independence tests for Re = 5 × 103 are reported in Di-

amessis et al. (2010b) where the authors compare results from simulations with
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coarser grids relative to the currently used grids and show that identical mean

and fluctuating velocity profiles and streamwise spectra are obtained over the

entire wake evolution. At the higher Reynolds number, and on account of

the prohibitive cost of grid independence tests, the authors ensured that the

thickness of the vertical shear layers that develop in the intermediate to late

wake for the Fr = 4 case is well resolved by increasing the polynomial order to

N̂ = 40 (p-refinement) and the number of subdomains M = 13 (h-refinement)

(see Fig. 3.1(a), and (b) for details). By appealing to Fr-scaling arguments, the

authors conclude that the thickness of the shear layers is larger for the Fr = 16

case, and hence they are well resolved, for the Fr = 16 case, if they are ade-

quately resolved for the Fr = 4 case.

All simulations performed employ the MPI-based parallel implementation of

the flow solver described in chapter 3. Re = 5 × 103 runs use N̂P = 32 proces-

sors for Fr = 4, 16 and N̂P = 64 for Fr = 64 , whereas the Re = 105 simulations

require N̂P = 256. All simulations and postprocessing were performed at the

Arctic Region Supercomputing Center’s Midnight Linux cluster. Midnight has

2 Sun Fire X4600 login nodes and two types of compute nodes: (a) 256 Sun Fire

X2200 nodes (2 dual core processors per node) (b) 35 Sun Fire X4600 nodes (8

dual core processors per node) with Voltaire Infiniband Interconnect. On this

machine, the average wall-clock time required for a computational timestep is

7 sec and 21 sec for the low and high Re runs, respectively. The respective du-

rations of the “relaxation” runs in wall-clock time were 16 hours and 10 days.

The primary simulations at Re = 5 × 103 required between 16 and 24 hours of

wall-clock time. The wall-clock timing for a high Re simulation was approxi-

mately 26 days.

75



The three dimensional horizontal divergence field (an indicator of the wave

field activity) and the three vorticity components were output every 0.1Nt for

postprocessing purposes. The data base thus built comprised 1000 snapshots

for each run which amount to almost 200 GB of disk space per Fr at the low

Re and 2 TB per Fr at the high Re. The data was transferred to local storage

drives using Cornell’s connection to the National LambdaRail; a high-speed

national network infrastructure with very high capacity and high bandwidth,

using a multi-stream scripted file transfer command (MPSCP) which allowed

us to transfer data at a rate ' 2/3 GB/minute.

Independent serial Fortran 90 subroutines were developed that allowed us to

read in the binary data files dumped out by the individual processors and

extract (a) two dimensional slices of data on xy, xz, yz planes at any any loca-

tion/time (b) space-time diagrams x − t, y − t, z − t at prespecified locations (c)

time series at any arbitrary point within the three dimensional data volume.

Two dimensional slice data on select xy planes were imported into the two di-

mensional CWT Fortran module to determine the horizontal wave lengths of

the IGW field. Similarly, x − t diagrams at select locations were also imported

into the one dimensional CWT Fortran module to calculate the frequency of the

IGWs from which the phase line inclination angles were determined using the

dispersion relation. Finally, the three dimensional velocity and density fields

were output every 2Nt. The simultaneous availability of the velocity and den-

sity fields allows the calculation of the instantaneous pressure (a quantity that

is not directly solved for in the main solver), the momentum, the energy and

the buoyancy flux associated with the wave field, which will be the subject of

future studies.
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5.4 Wave sponge layers

Wave propagation problems in infinite domain require the imposition of a radi-

ation boundary condition which requires the amplitude of waves entering the

domain from infinity to be zero (Durran, 1999). On a finite computational do-

main, the mathematical formulation of an appropriate radiation boundary con-

dition is very difficult to derive and is only known for simple one dimensional

and spherically symmetric wave problems (Israeli & Orszag, 1981). Wave ab-

sorbing layers placed at the edges of a finite sized computational domain rep-

resent an approximate and simple way to prevent outward propagating waves

from reflecting back into the computational domain. Wave absorbing layers

are particularly useful in applications for which the exact radiation boundary

condition are not known (Durran, 1999).

Two types of wave damping layers are typically used (Durran, 1999). For the

sake of this discussion, we assume the η direction to be normal to the lateral

boundaries where the sponge layers are placed . The viscous type damper in-

volves the incorporation of a viscous term with a varying viscous coefficient;

that is ν(η)∇2u to the right hand side of the disturbance (u) evolution equations

(the momentum and density equations in our study). The viscous coefficient

is zero inside the computational domain and increases smoothly with distance

inside the layer. The other type is referred to as a “Rayleigh-damping” absorb-

ing/sponge layer which takes the form −R(η)u and is also added to the right

hand side of the disturbance equation. The ratio 1/R(η) sets a characteristic

time scale for the absorbing layer which is the time over which the layer acts to

effectively damp out the disturbance inside it. In both layer types, although it

is desirable to have a large coefficient (ν(η)or R(η)) to dissipate the waves before
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they reach the boundaries and reflect back into the domain, rapid changes in

the medium properties caused by the choice of large coefficients in combina-

tion with relatively thin layers lead to reflection of the waves off the absorbing

layers back into the domain. For the linearized shallow water system, Israeli &

Orszag (1981) found that the undesirable backward reflection of the waves is

less scale dependent for a Rayleigh damper than a viscous damper. Hence the

Rayleigh damper offers a better performance.

In our wake simulations, we use a Rayleigh type damper with a smooth profile

(see Fig. 5.2), similar in form to that used by Klemp & Lilly (1978) namely:

R(η) = αsin2

(

π

2
(η − ηi)
δt

)

, (5.1)

where α = 1/Tsp and Tsp is the sponge layer time scale, [η is the boundary-

normal coordinate direction and ηi is the coordinate of the interface between the

sponge layer and the interior of the computational domain], and δt is the thick-

ness of the layer (see Fig. 5.2 and 5.3). The absorbing layers wrap around the

yz plane as shown in Fig. 5.3 and thus R is a function of both y and z. To avoid

erroneous reflection of the wave field we choose the thickness of the layer to

be comparable to the wavelength of the most energetic waves. As this scale is

not known beforehand we assume a layer thickness and test its efficiency upon

completion of a simulation at a given Re, Fr. We have found that a 2D thick-

ness, where D is the sphere diameter, is sufficient for Fr = 4, 16 simulations at

both Re, while a thickness of 4D was necessary for the Fr = 64 simulation.

We test the efficiency of the sponge layers by following the same approach

in Taylor & Sarkar (2007) wherein sample depth-time diagrams at multiple

down stream locations are Fourier-transformed into the vertical wave number-

frequency domain. Then the ratio of the energy of the downward to the upward
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moving wave field is estimated. Since this ratio is below 4% in all simulations

reported here, the absorbing layers are deemed to perform reasonably well.

Finally, a word of caution is in order in terms of the choice of the absorbing

layer time scale. Although it is obviously advantageous to choose a small time

scale for the absorbing layer, this time scale can not be smaller than the max-

imum time step that is permissible by the discretization scheme (∆tmax). Oth-

erwise, numerical instabilities develop. Hence, we impose an additional time

step constraint;

∆tmax < min

(

1
R(η)

)

, (5.2)

where R(η) usually attains its peak value at the computational domain bound-

ary. Specifically, the time scale Tsp = min (1/R(η)) is taken to be equal to 2∆tmax

where ∆tmax = (2π/N)/60.

5.5 Results

5.5.1 Visualization of the wave field structure

The analysis of the wave field properties in this study relies on the horizontal

divergence field, defined as

∆z = ∇ . uH, (5.3)

where the horizontal velocity vector uH ≡ (u, v), serves as an indicator of the

amplitude of the internal wave motion on horizontal xy planes above the tur-

bulent wake region, as done in the experiments of Spedding, Browand, Bell &

Chen (2000). From the continuity equation for an incompressible Boussinesq
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Figure 5.2: Rayleigh damping layer profile in
the wall normal direction η

Figure 5.3: Two dimensional contours of the Rayleigh
damping layer coefficient R(y, z)
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fluid, it is obvious that

∆z =
∂u
∂x
+
∂v
∂y
= −∂w

∂z
, (5.4)

and hence equation 5.4 provides a direct relationship between the amplitude of

the horizontal divergence field and that of the vertical derivative of the vertical

velocity component of an internal wave field. Both quantities can be related

to the isopycnals/vertical displacement field Aζ through linear theory. Specifi-

cally, for a monochromatic small amplitude internal wave field in a uniformly

stratified fluid, following the approach outlined in (Sutherland, 2005), it can be

shown that:

A∆z = m Aw ,

Aw = ω Aζ ,

Aζ =
A∆z

m ω
,

(5.5)

where (absolute values are implied in equation (5.5) Aw is the amplitude of the

vertical velocity field, m is the vertical wave number, A∆z is the amplitude of

the horizontal divergence field, ω is the wave frequency, and Aζ is the isopyc-

nals displacement amplitude. As a consequence of equation 5.5, the isopycnals

displacement amplitude is proportional to ∆z/N (asω = Ncos(θ)) and hence nor-

malizing the horizontal divergence field by the buoyancy frequency provides

an approximate measure of the vertical displacement of the wave field.

Figure 5.4 shows the evolution of the normalized horizontal divergence field

on horizontal xy planes above the wake center line for the low Re cases. The

choice of the vertical location of the horizontal plane of analysis should be such

that any possible contamination by the turbulent core during the wave evo-

lution should be avoided. The normalized wake half height Lv/D [defined as

in Diamessis et al. (2010b), through least-squares fitting a Gaussian profile to the

streamwise averaged velocity] for R5F4 up to Nt = 100 (not shown); does not
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exceed 0.5, a horizontal plane located at z/D = 1.5 is reasonably well-removed,

but not too far, from the turbulent core (to minimize viscous damping of the

waves). As the wake height increases with Fr, the plane locations for the other

Fr cases were chosen through a ∼ Fr0.29 scaling (15% bigger than the Fr0.25

wake height growth scaling determined by Diamessis et al. (2010b)), again, as

a safety factor, to prevent any possible wake intrusion into the analysis planes.

Note also that the region containing the wave field extends out to about 4D

in the spanwise direction for R5F4. The limits of this region increase approxi-

mately as Fr1/3 commensurate with the increase in the wake’s horizontal extent

determined by Diamessis et al. (2010b).

Note that the limits of the contour levels reported in Fig. 5.4 are chosen to op-

timize the visualization of the wave field at the earliest reported time. If the

instantaneous maximum wave amplitude is chosen, the spatial structure of the

wave packets becomes almost invisible and thus, the contour levels are chosen

as approximately 50% of the maximum amplitude at the earliest shown time

Nt = 15, where the wave emission is relatively weak. It is clear that the ampli-

tude of the normalized horizontal divergence field increases with Fr (i.e. with

reduced stratification) indicating, by virtue of equation 5.5, that the vertical

displacement amplitude also increases, in general agreement with the experi-

mental observations of Dohan & Sutherland (2003).

The wave field in Fig. 5.4 has a striking similarity to the wave field measured

by Spedding et al. (2000) for Fr > 4, where the wave field is dominated by

the random wake-generated waves and not the body generated lee waves. It

is clear that the wake emits coherent wave packets starting early on and that

the process continues throughout the NEQ regime. One of the basic differences
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(a)

(b)

(c)

Figure 5.4: Two dimensional contour plot of ∆z/N at different times on hor-
izontal xy planes at z/D=1.5, 2.3, 3.4 for (a) R5F4, (b) R5F16, (c)
R5F64. The sphere travels from left to right. The min./max.
ranges for the colorbars of ∆z/N are (a) [-0.025,0.025], (b)[-
0.04,0.04] , and (c) [-0.05,0.05].

between the evolution for the different Fr cases is that the peak wave activity

(as evidenced by the abundance of strong and coherent wave packets on the

horizontal plane of the analysis) seems to happen earlier in Nt units as does the

cessation of wave emission, as Fr increases. This is not a result of a faster wave

propagation time scale (in fact we will show later that the vertical group ve-

locity of the internal waves decreases as Fr increases) but rather seems to be a

result of the comparison being held at the same Nt rather than the same down-

stream distance (note that the equivalent down-stream distance for a given time

Nt is proportional to Fr). In effect, what this means is that even if internal wave

radiation by the wake may start at the same down-stream distance regardless
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of Fr, it will appear to happen later in Nt units as Fr increases. For the same

reason, the turbulence inside the wake viscously decays faster over the same

period in Nt units and hence wave radiation ceases earlier (in Nt units) as Fr

increases.

Regarding the scale and structure of the wave field, it can be seen that the

wave packets are strongly localized in the horizontal, with the individual wave

packets’ spatial envelopes containing ≈ 1 − 2λH), where λH is the horizontal

wavelength. Also the localization tends to increase with Fr and the horizontal

wavelength appears to increase with Fr. For a given simulation, the horizontal

wavelength tends to decrease over time and the wave field tends to lose its co-

herence over time. A more quantitative analysis of the length scales will follow

in the next section.

One of the intriguing features of the R5F64 case, also observed in the exper-

iments of Spedding et al. (2000) for Fr > 40, is the presence of almost horizon-

tal coherent bands at the left and right edges of the wave dominated region.

This was described to by Spedding et al. (2000) as “a wave front marking the

maximum horizontal propagation rate of disturbance due to initially turbulent

eddy motions (analogous to a Mach cone in compressible flow)”. By reducing

the limits of the contour levels for the Fr = 16, 64 (not shown), it was clear

that the bands also exist at the Fr = 16 case but they are significantly weaker

in magnitude and less streamwise coherent, which perhaps made them only

measurable in the Spedding et al. (2000) experiments when Fr > 40.

At the high Re (Fig. 5.5 and 5.6), the most evident feature is the persistence

of the wave emission linked to the prolongation of the NEQ regime observed
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(a)

(b)

Figure 5.5: Two dimensional contour plot of ∆z/N at different times
through 15 < Nt < 50 on horizontal xy planes at z/D=1.5,
2.3, for (a) R100F4, (b) R100F16. The min./max. ranges for the
colorbars of ∆z/N are (a) [-0.05,0.05], (b)[-0.075,0.075].

by Diamessis et al. (2010b). The Fr-specific of the end of wave emission ob-

served at the low Re is also observed here. For example, in the R100F4 sim-

ulation, energetically significant waves continue to be emitted up to Nt ≈ 90

whereas for the R100F16, intense wave radiations appears to stop by Nt ≈ 70.

By considering Fig. 5.4, 5.5, and 5.6, it is clear that for the same Fr there is a

significant increase in the amplitude of the normalized horizontal divergence

field with Re and a pronounced decrease in the wavelength at the high Re rela-

tive to the low Re.

Finally, it is instructive to examine the structure of the horizontal divergence

field on an xz plane. The phase line tilt in Fig. 5.7 is similar to that in the shad-
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(a)

(b)

Figure 5.6: Two dimensional contour plot of ∆z/N at different times
through 60 < Nt < 100 on horizontal xy planes at z/D=1.5,
2.3, for (a) R100F4, (b) R100F16. The min./max. ranges for the
colorbars of ∆z/N are (a) [-0.05,0.05], (b)[-0.075,0.075].

owgraph side views of the wake of the sphere measured by Bonneton et al.

(1993). The wave packets essentially spread forward (i.e. in the direction of

towing) and outwards from the center line. The prolongation of the wave emis-

sion, the increase of the amplitude of the normalized horizontal divergence

field, and the decrease in the vertical length scales in the R100F4 case relative

to the R5F4 case, seen in Fig. 5.7 are all features consistent with the xy plane

visualizations. Finally, for the R100F4 simulation, the continued horizontal ex-

pansion of the wake core appears to leave a sizeable region of small scale tur-

bulence inside the xz plane. The equivalent manifestation of the lateral growth

of the wake at the R5F4 seems to be the almost horizontal banded structures

concentrated around the wake center line.
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Figure 5.7: Two dimensional contour plot of ∆z/N at different times
through 15 < Nt < 50 on a vertical xz planes at y/D=1.5 for
(a) R5F4, (b) R100F4. The min./max. ranges for the colorbars
of ∆z/N are (a) [-0.025,0.025], (b)[-0.05,0.05].

There are numerous reasons as to why an xy horizontal plane is the ideal plane

for visualizing and quantifying the wave spectral characteristics. First of all,

the wake flow is inhomogenous in the spanwise direction and thus analyzing

one vertical xz plane at a select y/D distance from the center line is not suffi-

cient to capture any spanwise variability of the wave properties. Even more

importantly, the lateral growth of the wake is not limited by buoyancy forces

and hence at some point, later in time, the turbulent wake core will cross the

analysis plane (regardless of how far away, from the centerline, the plane is

chosen) and may possibly contaminate the measured wave properties. Finally,

from a computational data analysis standpoint, the limited vertical extent of

the domain (12D for Fr = 4, 16 and 20D for Fr = 64) implies that any length

scale bigger than Lz/4 will be heavily contaminated by edge effects and thus

can not be reliably determined.
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Figure 5.8: Three dimensional isosurface plot of the modulus of the Arc
wavelet transform of an xy plane for R5F4 at Nt = 30. The
horizontal axes are the physical space axes x and y. The vertical
axis is the horizontal wavelength (normalized by the sphere
diameter) corresponding to the wavelet scale.

5.5.2 Spectral characteristics of the internal gravity wave field

We first apply the two dimensional Arc wavelet transform to the horizontal di-

vergence field data on an xy plane above the wake center line, and then search

the resulting cube of data (the space-scale domain) for resonance. Figure 5.8

shows a cutaway view through the cube of data resulting from the applica-

tion of the Arc wavelet to the wave field in Fig. 5.9. The horizontal transect

at λH/D ≈ 1.5 in the cutaway view shows localized peaks that can be traced

back to individual wave packets on the xy plane. Figure 5.10 shows a verti-

cal transect at y/D = 2.5 through the modulus cube shown in Fig. 5.8. The

plot clearly shows localized regions (bands of influence) where the transform

is locally maximized as a result of resonance with wavepackets at the scales
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corresponding to the center of the bands. The area of the the bands of influ-

ence is clearly proportional to the spatial scale of resonance. The locations of

the local maxima on the space-scale plane seem to strongly correlate with the

locations of the wave packets marked by arrows in Fig. 5.9 at y/D = 2.5. The

centers of the influence bands are concentrated around an average length scale

of about λH/D ∼ 1.5 with deviations (across all peaks) of less than 0.5D.

The purpose of the analysis is to extract the length scales of the most energetic

waves at a given spanwise location on the xy plane of interest. Thus, the scales

corresponding to those local maxima where the transform modulus is bigger

than 50%of the global maximum are averaged and a mean scale is reported at

this spanwise location. This conditional averaging acts to filter out local reso-

nance associated with weak wave packets. As the wake-radiated internal wave

field is quasi-random in nature, waves of certain scale detected at a particular

location may not be detected at the same location in different realizations of

the flow with identical, yet slightly different, initial conditions. However, the

statistics of the wave scales, such as the mean and r.m.s. deviations, should be

repeatable in such realizations.

By virtue of the spanwise symmetry around the center line (y/D = 0), it suf-

fices to consider only half of the xy plane. Hence, we focus on the (x, y/D > 0)

half plane. We further limit the search for resonance on the xy half plane to

limited areas/bands in the spanwise direction where there is significant wave

acitivity. The choice of these bands depends mainly on Fr and weakly on Re,

for example we focus on 1.5 < y/D < 4.5 for the R5F4 simulation. In order

to minimize the search for resonance we sample the transform modulus data

at few equally spaced y/D locations within the bands (e.g. a spacing of 1D is
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chosen for the R5F4) to exclude statistically dependent data. The spanwise ex-

tent of the search bands is increased with Fr, being 1.5 < y/D < 6.5 for R5F16

and 1.5 < y/D < 8.5 for R5F64. As the wave emission is prolonged at the

higher Re (up to Nt ≈ 90 for R100F4) and on account of the continued lateral

wake growth, the spanwise extent of the search bands is increased relative to

the low Re, being 1.5 < y/D < 6.5 for R100F4 and 1.5 < y/D < 8.5 for

R100F16. Finally, to avoid edge effects, we discard the modulus data over a

region of length ≈ 2− 4D near the left and right boundaries of the domain.

The results obtained from the five different simulations are shown in Fig. 5.11

and 5.12. As soon as significant wave activity reaches the analysis plane, the

horizontal length scale (not shown) remains nearly constant over a short pe-

riod (O(5 − 10Nt)), the duration of which is mainly dependent on Reynolds

number, the longer period corresponds to the high Re. Since the arrival time

of the internal wave field at the analysis plane is hard to define objectively, we

are not showing this initial constant length scale phase. The length scales then

transition into a regime where they decay at a uniform rate that mainly de-

pends on Re, but is also weakly dependent on Fr. The decay in the wavelength

(and possibly the loss of coherence over time) may be attributed to interference

between wavepackets that are emitted from different locations with different

wavelengths and frequencies/angles of propagation.

The average power law fit of all the data at the different spanwise sampling

locations are shown in Fig. 5.11 and 5.12 as solid lines along with data from

only two sampling locations in order to facilitate the interpretation of the re-

sults. The mean values of the coefficients of the average power law fits α and β

in λH/D = αNtβ, along with their standard deviations (r.m.s values) are sum-
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Figure 5.9: The normalized horizontal divergence field on a horizontal xy
plane at z/D = 1.5 for R5F4 at Nt = 30. The min./max. ranges
for the colorbars are [-0.04,0.04]

Figure 5.10: A vertical transect through the modulus transform cube
(Fig. 5.8) at y/D = 2.5.
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Table 5.1: Summary of the band averaged power law fit coefficients from
the Arc wavelet transforms (λH/D = αNtβ)

Simulation α (mean) α (r.m.s.) β (mean) β (r.m.s.)

R5F4 4 0.4 -0.3 0.03

R5F16 6.8 1.1 -0.35 0.04

R5F64 10.0 1.7 -0.39 0.06

R100F4 10.0 1.8 -0.56 0.03

R100F16 22.9 2 -0.70 0.02

marized in table 5.1. The Fr driven variations in the decay rates are small and

may not be detectable experimentally, for example at the low Re, they may be

hard to differentiate from a 1/
√

Nt, considering the inevitable experimental er-

ror levels.

The horizontal wave length decay rates reported here are significantly dif-

ferent from the 1/Nt found experimentally by Bonneton et al. (1993) where

Fr, Re = (10/π, 8320), (4, 10456), (5, 13070). The experimental data plotted

in Fig. 8 in Bonneton et al. (1993), as commented on by the authors, show large

scatter in the length scale data, but in addition to that, the average decay rate

by visual observation of their data appears to be noticeably slower than the

proposed 1/Nt. The faster decay rate in the experiments may be a result of the

difference between our sampling criteria that only focuses on the most ener-

getic waves. Details of the sampling of the wave field and determination of the

wavelength were not reported in Bonneton et al. (1993). Finally, a purely em-

pirical Fr1/4 scaling seems to accurately collapse all the horizontal wavelength

data in all five reported simulations (see Fig. 5.13 and 5.14).
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Figure 5.11: The evolution of the normalized horizontal wavelength ob-
tained from the Arc wavelet transform of the horizontal diver-
gence field on a horizontal xy planes at z/D = 1.5, 2.3, 3.4 for
R5F4, R5F16, R5F64, respectively. Color coding is as follows:
red for Fr = 4, blue for Fr = 16, black for Fr = 64. Circles
and squares represent data at y/D = 1.5, 2.5 for Fr = 4, 16
and y/D = 2.5, 4.5 for Fr = 64, respectively. Solid lines are
band-averaged power law fits.
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Figure 5.12: The evolution of the normalized horizontal wavelength ob-
tained from the Arc wavelet transform of the horizontal di-
vergence field on a horizontal xy planes at z/D = 1.5, 2.3 for
R100F4, R100F16, respectively. Legend as in Fig. 5.11.
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Figure 5.13: Fr scaling of the normalized horizontal wavelength obtained
from the Arc wavelet transform of the horizontal divergence
field on a horizontal xy planes at z/D = 1.5, 2.3, 3.4 for
R5F4, R5F16, R5F64, respectively. Legend as in Fig. 5.11

10
1

10
2

10
−1

10
0

Nt

(λ
H

/D
) 

F
r−

0.
25

Figure 5.14: Fr scaling of the normalized horizontal wavelength obtained
from the Arc wavelet transform of the horizontal diver-
gence field on a horizontal xy planes at z/D = 1.5, 2.3 for
R100F4, R100F16, respectively. Legend as in Fig. 5.11.
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Careful consideration of the visualizations in Fig. 5.4, 5.5, 5.6 shows that,

although the orientation of the dominant wavenumbers of the individual

wavepackets vary over space and time, it appears that the wave numbers re-

main concentrated around a single mean direction with slight deviations there-

from. Accordingly, it is hoped that interrogating the two dimensional signal

with Morlet2D wavelet at this mean direction may capture the bulk of the wave

energy. Identification of the mean direction, referred to hereafter as φ allows

us to better understand the dominant orientation of the wavepackets on the

horizontal plane and, if desired, allows direct decomposition of the horizontal

wave number into its streamwise and spanwise components.

The statistical principles for the determination of a mean angle from a collec-

tion of measured angles is explained in detail in appendix B. Essentially the

technique involves interrogation of the signal (the horizontal divergence field

on horizontal xy planes) using the Morlet2D wavelet transform at several an-

gles where local resonance is sought. Remarkably, all resonant angles, thus

determined, were found to be highly concentrated around mean directions (for

more details see appendix B). The mean directions (also called “azimuth an-

gles”) are summarized in table 5.2 along with power law fits of the horizontal

length scales obtained from Morlet2D wavelets. The azimuth angles in all five

cases were in the range 56− 60◦ with no systematic dependence on either Re

or Fr. The power law fits obtained from the Morlet2D wavelets are indeed in

close agreement with those obtained from the non-directional Arc wavelets ,

with maximum length scale deviations of less than 15%, confirming our expec-

tation that there are prevalent mean directions carrying the bulk of the wave

field energy in all the simulations. Furthermore, a scatter plot of the horizontal

wavelengths (Fig. 5.15) obtained from the Arc and Morlet2D wavelets, from all
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Table 5.2: Summary of the azimuth angles and the band averaged
power law fit coefficients from the Morlet2Dwavelet transforms
(φ , λH/D = αNtβ)

Simulation φ α (mean) α (r.m.s.) β (mean) β (r.m.s.)

R5F4 60◦ 3.5 0.6 -0.3 0.02

R5F16 56◦ 6.5 0.8 -0.38 0.03

R5F64 60◦ 9.7 2.0 -0.4 0.06

R100F4 59◦ 8.0 1.5 -0.52 0.03

R100F16 60◦ 18.4 4 -0.66 0.03
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Figure 5.15: Scatter plot for the horizontal length scales obtained from the
Arc and Morlet2D wavelet transforms for the five different
simulations. Legend as in Fig. 5.11 with filled symbols for
Re = 105 data and open symbols for Re = 5 × 103. The black
solid line is the identity line.

five simulations, shows a high concentration of the data in the vicinity of the

identity line.

In view of the limitations of wavelet analysis on the xz plane, detailed in §5.5.1,
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we use the internal gravity wave dispersion relation (equations 1.4 and 1.5)

to determine the vertical wavelength. As this approach requires that the fre-

quency of the waves to be known, we now seek ways to understand and quan-

tify the distribution of the wave frequency over the analysis planes.

Figure 5.16, 5.17 show streamwise-time x − t diagrams extracted at

(z/D = 1.5, y/D = 1.5) for R5F4 and R100F4, respectively. The diagrams mimic

a hypothetical experiment in which large number of sensors are placed next to

one another in the streamwise direction, at a fixed distance from the wake cen-

terline in the vertical and spanwise directions, to continuously record the hori-

zontal divergence field over the duration of the experiment. The most notable

feature in Fig. 5.16 (the low Re) is the prevalence of a nearly constant wave pe-

riod ( the distance between two consecutive points , along the time axis, having

the same phase) whereas Fig. 5.17 (the high Re) shows somewhat continuous

decrease in the wave period. In addition, at early time the wave period for the

high Re seems to be larger than the wave period in the low Re. The selection of

a narrow range of frequencies is in general agreement with all previous studies

of turbulence generated IGWs..

As we only need to determine the frequency of the waves, there is no need

for two-dimensional wavelet transforms of the x − t diagram. Instead, one

dimensional transforms in the time coordinate direction are sufficient for this

purpose. We extract 21 time series from the x − t in the range x/D ∈ [−10, 10],

each sampling location spaced by a sphere diameter, and take their one dimen-

sional wavelet transforms using the complex Morlet wavelet. The modulus of

the transform of a time series is essentially a function of time and frequency.
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For a given time series, at a specific x/D, we conduct a one dimensional search

at a given time to determine the frequency that maximizes the modulus of the

transform. Now, at a given Nt, the resonant frequencies from all time series at

the different x/D distances, are conditionally averaged. Frequencies where the

associated values of the modulus of the transform is below 50% of the global

maximum across all downstream locations, are excluded from the averaging.

The frequencies are finally transformed into equivalent phase line tilt angles

(also called “polar angle”; θ) through the dispersion relation (equation 1.4). To

capture the spanwise variability of the frequencies we repeat the procedure

outlined above for x − t diagrams extracted at multiple spanwise locations (on

the same xy analysis plane) within the bands of significant wave activity.

Figure 5.18 shows the evolution of the phase line tilt angle obtained from the

one dimensional wavelet transform for the five simulations. Remarkably, the

angles (and the implied frequencies) and their evolution seems to faithfully re-

produce the general features found in Fig. 5.16 and 5.17. The angles, being in

the range θ = [27 − 50] are in good agreement with previous studies of turbu-

lence generated IGWs (Sutherland & Linden, 1998; Dohan & Sutherland, 2003,

2005; Aguilar, Sutherland & Muraki, 2006; Taylor & Sarkar, 2007; Munroe &

Sutherland, 2008; Pham, Sarkar & Brucker, 2009), implying that the properties

of these waves are universal, independent of the specific underlying turbulent

process (such as wakes, boundary layers, and oscillating grid). Nevertheless

the current results clearly establish the following:

• At a given Re, any Fr dependence of the phase line tilt angles is weak.

• At low Re where viscous effects are important, the phase line tilt angles

are close to 35◦, the angle that maximizes the group velocity of the waves
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Figure 5.16: Streamwise-time (x − t) diagram of the normalized horizon-
tal divergence field at y/D = 1.5, z/D = 1.5 for R5F4.The
min./max. ranges for the colorbars of ∆z/N are [-0.025,0.025].

Figure 5.17: Streamwise-time (x − t) diagram of the normalized horizon-
tal divergence field at y/D = 1.5, z/D = 1.5 for R100F4.The
min./max. ranges for the colorbars of ∆z/N are [-0.05,0.05].

99



0 20 40 60 80 100
10

20

30

40

50

60

70

Nt

θ 
(d

eg
.)

Figure 5.18: Evolution of the phase line tilt/polar angle obtained from the
one dimensional wavelet transforms. Legend as in Fig. 5.11
with filled symbols for Re = 105 data and open symbols for
Re = 5× 103.

and hence waves propagating at these angles will experience the mini-

mum viscous decay (Sutherland, 2005).

• At large enough Re, where viscous effects are negligible, the the phase

line tilt angles , especially around the time of maximum wave activity, are

close to 45◦, the angle that maximizes the momentum extraction from the

wake shear profile (Sutherland, 2005), and thus waves that are capable of

exerting the maximum drag on the wake prevail.

Table 5.3 and 5.4 summarizes the coefficients of the power law fits of the tan-

gent of the phase line tilt angle and the vertical length scales obtained from

equation 1.5.

Remote detection of subsurface signature of IGWs depends critically on the

vertical component of the group velocity of these waves; the velocity by which
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Table 5.3: Summary of the band averaged power law fit coefficients for the
tangent of the polar angles (tan(θ) = αNtβ).

Simulation α (mean) α (r.m.s.) β (mean) β (r.m.s.)

R5F4 0.6 0.01 0 0.0

R5F16 0.59 0.02 0 0.0

R5F64 0.61 0.02 0 0.0

R100F4 1.7 0.30 -0.19 0.04

R100F16 1.9 0.32 -0.16 0.03

Table 5.4: Summary of the band averaged power law fit coefficients for the
normalized vertical length scales (λz/D = αNtβ).

Simulation α (mean) α (r.m.s.) β (mean) β (r.m.s.)

R5F4 6.7 0.5 -0.3 0.03

R5F16 11.5 1.2 -0.35 0.04

R5F64 16.4 1.9 -0.39 0.06

R100F4 5.9 1.2 -0.37 0.04

R100F16 12.0 2.1 -0.54 0.03

the wave energy propagates in the vertical (can be estimated from equation 1.7).

Figure 5.19 shows the evolution of the estimated vertical group velocity in all

five simulations. The time series clearly shows that the group velocity is mainly

dependent on Fr, being smaller at the higher Fr. Although equation 1.7 shows

that the group velocity is a function of the buoyancy frequency (or equiva-

lently Fr) , the length scales, and the phase tilt angles ( the length scales and

the angles themselves are functions of both Re and Fr), it appears that Fr ef-

fects overshadow a very weak Re dependence. An empirical Fr−3/4 scaling

(Fig. 5.20) appears to accurately collapse all the data from the five simulations,
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Figure 5.19: Evolution of the vertical group velocity obtained from the five
simulations. Legend as in Fig. 5.11 with filled symbols for
Re = 105 data and open symbols for Re = 5× 103.

confirming the lack of any Re dependence. The time-average vertical group ve-

locity over (the interval of significant wave emission) 10 < Nt < 50 for R5F4

is about 3.5% of the sphere velocity. Not surprisingly, nearly the same velocity

estimate is obtained over the interval 20< Nt < 90 for the R100F4.

5.5.3 Degree of nonlinearity

The steepness of the internal wave field, defined as A = Aζ/λx for a two-

dimensional wave field is a measure for the nonlinearity of the waves and their

potential for resonant wave-wave interactions and convective breaking. For a

three dimensional wave field, we define A = Aζ/λH as a more appropriate mea-

sure for the steepness of the underlying wave field. Equation 5.5 shows that

the displacement amplitude can be calculated if the frequency and the vertical

wavenumber are known. On account of the spatial variability of the horizon-
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Figure 5.20: Fr scaling of the vertical group velocity obtained from the five
simulations. Legend as in Fig. 5.11 with filled symbols for
Re = 105 data and open symbols for Re = 5× 103.

tal divergence field, there is a need to define an average amplitude to be used

in 5.5. While a plane average will tend to smooth out local maxima associ-

ated with wavepackets having large horizontal divergence amplitude, a global

maximum (the maximum amplitude over the whole xy plane) will also tend to

over-estimate the steepness of a wave field with few isolated local maxima. As

a result, it seems that the most appropriate definition would be to conditionally

average the local maxima over the bands of significant wave activity.

Figure 5.21 shows the estimated wave steepness in all five simulations. The

plot reproduces some of the features of the wave emission process observed

in Fig. 5.4, 5.5, 5.6. In particular, at a given Re, increasing Fr leads to a steeper

wave field. For example, Fig. 5.21 shows that the peak steepness increases from

∼ 1% in the R5F4 case to ∼ 1.8% in the R5F16 case. An even larger increase in

the peak steepness can be clearly seen in the R5F64 case relative to the R5F16

case. Also, at a given Fr, increasing Re leads to a significant increase in the
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peak steepness. For example, the peak steepness in R5F4 is ∼ 1% whereas for

R100F4, the peak steepness is ∼ 2.2%. Finally, the peak steepness and the ces-

sation of significant wave emission are attained at earlier Nt as Fr increases. In

addition to that, increasing Re leads to a significant delay in attaining the peak

steepness (at a given Fr) because of the associated prolongation of the NEQ

regime. For example, the peak steepness for R5F4 is attained around Nt ∼ 20,

whereas for R100F4 the peak is attained around Nt ∼ 40.

Finally, our results show that (see Fig. 5.22) the maximum vertical displace-

ment amplitude attained by the wake generated waves is relatively large, be-

ing 1 − 7% of the horizontal wavelength (10 − 70% of the self acceleration

limit) in the low Re simulations and 2 − 4% of the horizontal wavelength

in the high Re runs (20 − 30% of the self acceleration limit). The results in

R5F4,R5F16,R100F4,R100F16 are in close agreement with Dohan & Suther-

land (2003) where the steepest measured waves were in the 2−4%range which

corresponded to 25%of the instability limit.

5.6 Discussion

The use of two-dimensional CWT allowed us to determine the spectral prop-

erties of a turbulent wake generated internal wave field. In particular, the hor-

izontal wavelengths of the energetically dominant wavepackets were compa-

rable to the sphere diameter (O(2 − 4D)) and decayed over time at a rate that

is dependent on both Fr and Re, but in general is significantly slower than the

1/Nt predicted by the impulsive wave theory (Bonneton, Chomaz & Hopfin-

ger, 1993) which does not even imply any dependence on either Fr or Re. The
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Figure 5.21: Evolution of the internal wave field steepness from the five
simulations. Color coding is as in Fig. 5.11 with filled symbols
for Re = 105 data and open symbols for Re = 5× 103.
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Figure 5.22: Comparison of the maximum wave steepness in all five sim-
ulations to the internal wave instability limits, plotted against
the phase line tilt angle θ. Symbols’ color coding is as in
Fig. 5.11 with filled symbols for Re = 105 data and open sym-
bols for Re = 5× 103. Black solid line represents the self accel-
eration limit while the blue solid line indicates the overturn-
ing limit. Finally, the red solid line represents the convective
breaking limit.
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horizontal wavelengths were also dependent on both Fr and Re such that they

increase with increasing Fr and decreasing Re. The Fr scaling was empirically

determined to be Fr1/4.

The orientations of the wave numbers on a horizontal plane above the wake

center line were concentrated around a mean direction of ∼ 60◦ independent of

both Fr and Re. One-dimensional CWT based on the complext Morlet wavelets

allowed us to determine the internal wave frequencies and phase line tilt an-

gles from multiple time series. Surprisingly, for all low Re simulations, the

angles were constant over time and equal to ∼ 31◦, i.e. close to the angle that

maximizes the vertical group velocity of the wave field (∼ 35◦), which indicates

that the prevalence of waves propagating at this angle in the low Re simula-

tions, where viscous effects are more strongly “felt” by the waves, is because

they experience the minimum viscous decay. These angles are very close to the

∼ 26.6◦ angle that minimizes the viscous decay according to the viscous decay

model proposed by Taylor & Sarkar (2007). On the contrary, at the high Re,

where the viscous time scale is 20 times bigger than at the low Re and hence

viscous effects are minimal, the angles exhibited a slow decay rate, with the

waves at the most intense wave emission period propagating at angles ∼ 45◦,

again nearly independent of Fr. Waves propagating at ∼ 45◦ are associated

with maximum vertical flux of horizontal momentum and thus they are most

capable of exerting the maximum drag on the turbulent wake. This in turn

suggests that, at high Re wave emission by the wake is governed by a resonant

feed back between the waves and the turbulent wake, whereby waves that are

most capable of modifying the turbulent wake region act back on it to enhance

their emission. To the best of our knowledge, the clear identification of Re as

the basis for the selection mechanism of wave propagation angles is a novel
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result that has not been reported before in the literature.

Knowledge of the propagation angles and the horizontal wavelengths allowed

us to estimate the vertical length scales (through the linear dispersion relation)

and the vertical group velocity. Although the vertical length scales at R5F16

were comparable to the height of the vertical space available for wave propa-

gation, visualization of the wave field on the xz plane showed that the wave

field is strongly localized in the vertical, with vertical envelope sizes of ∼ 1/2λz

and hence confinement was not an issue. This indeed suggests that the current

results can be supplemented by another wavelet type that enables the deter-

mination of the size of the wavepacket envelopes where the most energetically

significant oscillations reside. Daubechies or Mexican hat wavelets seem to be

attractive for this purpose

The wave displacement amplitude was shown to increase with both Re and Fr.

While the intuitive dependence of the displacement amplitude on Fr is sup-

ported by all the few available experimental studies, the dependence on Re has

not yet been established experimentally. For a fixed Re, Increasing Fr amounts

to decreasing the strength of the stratification as Fr is inversely proportional

to N. Since the horizontal wavelength increases with Fr, the only plausible ex-

planation to the observed increase in the steepness with Fr is an even faster

increase in the displacement amplitude Aζ with Fr. This is in general agree-

ment with the experimental results of Dohan & Sutherland (2003) for IGWs

generated by stationary turbulence, where the authors found that Aζ ∼ N−1.68

where N ∈ [0.75− 1.23] rad/s. For F ∈ [4 − 10] Bonneton et al. (1993) found that

Aζ ∼ F2 (or equivalently Aζ ∼ N−2) for internal waves generated in the wake

of a towed sphere. On the other hand, for an internal wave field generated
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by a towed sphere below a thermocline Robey (1997) found that the increase

in the measured internal wave amplitudes with Fr is closer to a linear than a

quadratic.

In our simulations, although it is hard to accurately estimate the scaling of the

maximum vertical displacement with Fr (due to the limited number of simula-

tions), linear least square fit (not shown) of the maximum wave displacement

in the three reported simulations at the low Re shows a Fr0.98 scaling, i.e. close

to the linear scaling supported by the measurements of Robey (1997). It is to

be noted that in the experiments of Bonneton et al. (1993), changing Fr is ac-

companied by a change in Re. In fact Bonneton et al. (1993) argue that the the

dependence of the displacement amplitude on Re should be weak as the am-

plitude is determined by the scale of the energy containing eddies in the wake

at the onset of collapse which is independent of Re, but they do not provide a

clear evidence to support this argument.

Clearly any Re based arguments/scaling requires a detailed understanding

of the wave generation mechanisms which are not yet well understood. The

results, in their core, indicate that simplified models based on wake collapse

or the superposition of impulsive mass source(s) Bonneton et al. (1993); Voisin

(1991, 1994) may need to be reexamined.

Finally, the steepness of the wave fields were moderately large in the Fr = 4, 16

simulations, being in the range 10− 30%of the wave instability limit, however,

for the Fr = 64 simulation the steepness was as large as 70%of the instability

limit. The large steepness determined for the Fr = 64 simulation cast some

doubt on the reliability of the wave propagation angles and vertical length
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scales estimated from the linear dispersion relation, in this particular simula-

tion, as it is strictly valid for low amplitude internal waves. Direct calculation

of the vertical length scales from the xz planes in our simulations is not reliable

either as the vertical window size is comparable to the vertical wavelength. In-

creasing the vertical height of the domain to enable accurate wavelet analysis

on the xz plane is beyond the available computational resources.

Like the wave displacement amplitude, the steepness increases with both Re

and Fr, indicating that extrapolating the results to navally relevant conditions,

where Re and Fr are typically larger than the values considered here, implies

that the waves generated behind the naval submarines are more prone to non-

linear wave-wave interactions and breaking. Thus, the proposed mechanisms

of remote breaking events, driven by submerged-turbulence-driven IGW radi-

ation, proposed by Keeler et al. (2005) could be feasible in the ocean and might

be enhanced upon the interaction of these waves with critical layers (Winters

& D’Asaro, 1989, 1994) and density jumps (Delisi & Orlanski, 1975).
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CHAPTER 6

NUMERICAL GENERATION AND EVOLUTION OF LARGE

AMPLITUDE INTERNAL WAVES

6.1 Problem description

We are primarily interested in examining the generation and propagation (and

breaking, when desired) of a large-amplitude hydrostatic IGW packet such as

that considered in previous investigations (Winters & D’Asaro, 1989; Slinn &

Riley, 1998a). The horizontal wave-length of such a wave is much bigger than

its vertical wave-length and accordingly it has near-horizontal group velocity.

Note that the findings of this study are also relevant to non-hydrostatic IGWs.

The governing equations are the two-dimensional, incompressible, Navier-

Stokes equations under the Boussinesq approximation (equations 3.1- 3.3,

where for a two dimensional field, u = (u,w)) with forcing terms Fu = (Fu, Fw)

and Fρ added to the right hand side of the momentum (3.1) and the density

(3.2) equations, respectively. The forcing terms are patterned after the initial

condition often used in IGW process studies, a wave packet at time t = 0 as

represented by a solution of the inviscid, non-diffusive linear internal wave

equations (Winters & D’Asaro, 1989):

uw(x, y, t = 0) = Uo

(

−Am
k

F(z)cosφ − A
k

F′(z)sinφ
)

, (6.1)

ww(x, y, t = 0) = UoAF(z)cosφ, (6.2)

ρw(x, y, t = 0) = −
∣
∣
∣
∣
∣

dρ
dz

∣
∣
∣
∣
∣

UoA
ω

F(z)sinφ, (6.3)

where φ = kx + mz, m and k are the vertical and horizontal wave numbers,

ω is the angular frequency, Uo is a reference velocity scale and A is the non-
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dimensional amplitude of the vertical velocity, such that AU0 is the vertical ve-

locity amplitude of the generated wave packet. Consistent with the definition

used by Slinn & Riley (1998a) in their study of continuously forced IGW trains,

the forcing terms, Fu and Fρ , result from dividing (6.1)- (6.3) with a reference

timescale L/Uo (where the reference lengthscale is L = λx = 2π/k) and replacing

the phase argument with φ = kx+mz−ωt. We use the same localization function

used by Slinn & Riley (1998a) and Winters & D’Asaro (1989):

F(z) = exp

(

−(z − zcen)
2

2σ2

)

, (6.4)

which, however, we recast in terms of the half-height σ of the localization func-

tion. The particular choice of σ is such that the Gaussian envelope of this func-

tion fits about four vertical wavelengths.

6.2 Numerical simulations summary

The baseline case around which all simulations are designed is patterned af-

ter that considered by the critical level interaction study of Winters & D’Asaro

(1989). The problem geometry is illustrated in figure 6.1. Two possible con-

figurations are considered in a linear stratification: one where the generated

IGW freely propagates away from the generation region and one where it en-

counters a Gaussian jet that is positioned several vertical wave-lengths away

from the wave source. The four governing parameters, defined in terms of

the wave properties, are the wave-based Reynolds number, Rew = Cλx/ν (

where C = ωλx is an approximate horizontal phase speed) and Richardson

number, Riw = (Nλx/C)2, vertical-to-horizontal wavenumber ratio m/k and the

non-dimensional vertical velocity amplitude A. To enable a straightforward

comparison with the work of Winters & D’Asaro (1989), we also consider an
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Figure 6.1: Schematic of problem setup: a vertically localized IGW is gen-
erated in the forcing region and allowed to freely propagate
downward. In the critical level simulation, a Gaussian back-
ground shear flow is positioned near the bottom of the compu-
tational domain.

alternative Richardson number denoted by Ri = (Nλx/Uo)2 . Note that through-

out this chapter, ω and N are used in units of rad/sec (including the definitions

of Riw and Rew). For the purpose of comparing with Winters and D’ Asaro, the

definition of Ri considers N in units of Hz. Table 6.1 summarizes the values of

the parameters used in the baseline case for the free propagation simulations.

It is emphasized that, for the baseline case, Ri = 1, Rew = 1.5× 106, m/k = 8 and

A = 0.015. For the particular choice of m/k, the wave number vector is inclined

at an angle θ = arctan(m/k) ≈ 83◦ to the horizontal. The value of A in the base

case, which is the same as in the large amplitude case studied by Winters &

D’Asaro (1989), is such that the steepness of the wave field is slightly below the

overturning limit (defined as cotθ/(2π) in Sutherland (2001)) for the particular
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Table 6.1: Parameter values used in the base-case simulation

Parameter Value

Ri 1

Riw 65

Rew 1.5× 106

Pr 1

m/k 8

A 0.015

Lx/λx 1

Lz/λx 3

σ Lx

√

(0.21)2/(−2 ln(1/2))

zcen/Lz 0.8

angle θ. Finally, an additional set of simulations is considered where the strat-

ification frequency N is increased by a factor of 4, leading to a value of Ri = 16

but the same value of Riw = 65.

The rectangular computational domain has dimensions Lx and Lz. In all simu-

lations, Lx is chosen to accommodate one horizontal wavelength, with the ex-

ception of the runs investigating the effect of horizontal localization where Lx

is adjusted accordingly (see §6.3.2). Lz is selected to allow for a domain where

the generation region is sufficiently far from the top and bottom boundaries to

avoid unwanted reflections and allow sufficient distance for the wave to prop-

agate downward through the ambient fluid.

In all simulations, the forcing is turned on and off impulsively (i.e. without

any gradual ramp-up and ramp-down in amplitude) and is kept active for ex-
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actly one wave period, up to time Tw = 2π/ω. The resulting vertically localized

wave packet, hereafter referred to as the “mature wave-packet” is expected to

have the specified frequency and wave lengths and to propagate downward

with the group velocity predicted by the linear theory. Through a series of pre-

liminary runs, the forcing amplitude input to the numerical model is iteratively

adjusted so that by the end of the forcing period, the mature wave packet will

have the nominal vertical velocity amplitude AU0.

The baseline grid resolution for the free propagation simulations consists of

64 grid points in the horizontal and 25 vertical subdomains of equal height and

uniform order of polynomial approximation of 40, for a total of 1025 vertical

grid points.

6.3 Results

6.3.1 Horizontally periodic and vertically compact wave

packet

We first examine results from fully nonlinear numerical simulations for the

baseline case of a horizontally periodic and vertically compact IGW (Ri = 1).

Two-dimensional contours at t = 5Tw of the horizontal velocity field (fig. 6.2)

show a homogeneous horizontal band of negative flow created behind the rear

of the wave packet. Focusing on one-dimensional vertical transects and as the

generated wave packet moves downwards, a progressive reduction of its am-

plitude is observed along with strong structural modulations and distortions
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of its rear flank (see figure 6.3). By t = 5 Tw, the wave packet has decayed to

nearly half its originally prescribed amplitude. Note that the asymmetry that

develops in the wave envelope prevents a consistent/accurate definition of the

wave amplitude at t = 5 Tw.

Such a relatively weak and structurally modified wave packet may not be

suitable for numerical simulations directed towards exploring the amplitude

sensitivity of strong wave intensification and breaking. Presumably, the decay

of the wave packet’s amplitude can be compensated for by the use of larger

initial forcing amplitude. However, since the wave amplitude considered here

is very close the overturning limit at the given wave number orientation angle,

the initial amplitude cannot be increased any further without risking the break-

ing of the wave at the source.

Figure 6.4 shows the evolution of the mean horizontal velocity profile, defined

as

U(z, t) =
1
λx

∫ λx

0
u′(x′, z, t)dx′ , (6.5)

during the wave generation phase. As is visible in figure 6.4 and also in

contour plots of the instantaneous horizontal velocity at much later times (not

shown here), the mean flow is associated with two counter-flowing horizontal

jets that develop in the forcing region. As shown in the subsequent discussion

of §6.4.3, the negatively-oriented jet remains localized in the forcing region as

a residual mean flow. It is found to grow nonlinearly with time by, apparently,

depleting the IGW packet of its energy and producing strong structural mod-

ulations. Finally, §6.4.3, also establishes that the positive component of the

horizontal jet corresponds to what has been identified in previous studies as

the mean flow induced by the propagating wave.
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Figure 6.2: Two-dimensional contours of the horizontal velocity field at
t = 5Tw in a fully nonlinear simulation of a horizontally peri-
odic, vertically localized wave packet, for Ri = 1 (contours are
normalized by the horizontal velocity amplitude Au = AUom/k
at t = Tw).

Figure 6.3: Vertical profile of the instantaneous horizontal velocity at x =
Lx/2 at t = Twand 5Tw in a fully nonlinear simulation of a hori-
zontally periodic, vertically localized wave packet, for Ri = 1.
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Figure 6.4: Comparison of the analytical and numerical solutions of the
mean flow evolution during the wave generation phase in a
fully nonlinear simulation of a horizontally periodic, vertically
localized wave packet, for Ri = 1.

An additional simulation, similar to the one described above has been run

where all parameter values are kept the same, except for the the Brunt Vaisala

frequency, N, which is now quadrupled (Ri = 16). In this case, the highly non-

linear near-source interaction of the IGW with the residual mean flow produces

only a 20%decay of the wave’s initial amplitude and significantly weaker struc-

tural modulations of the rear flank of the packet (figure 6.5).

6.3.2 Effect of horizontal localization

By virtue of the design of the forcing functions described in §6.1, the resulting

IGW packets are infinitely periodic in the horizontal. In the laboratory and in

nature, a more realistic wave source will have a finite extent not only in the

vertical but also in the horizontal, thus generating waves that are localized in
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Figure 6.5: Vertical profile of the instantaneous horizontal velocity at x =
Lx/2 compared at t = Tw and5Tw in a fully nonlinear simulation
of a horizontally periodic, vertically localized wave packet, for
Ri = 16.

the horizontal. Such horizontal localization can have a significant impact on

the evolution of large-amplitude IGWs (Sutherland, 2001). Jones & Houghton

(1972) argued that a horizontally localized IGW source injects momentum into

the mean flow in a horizontally limited region, thereby enabling the develop-

ment of horizontal pressure gradients which, in turn, oppose the formation of

mean currents.

A simulation has been performed in which the wave packet is compact in both

the vertical and horizontal directions. The vertical localization function and

governing parameters values are the same as those employed in the horizon-

tally periodic case of §6.3.1. The horizontal/vertical localization function is

F(x, z) = exp−
(

(x − xcen)2

2σ2
x

+
(z − zcen)2

2σ2
z

)

(6.6)

where, in order to avoid potential horizontal dispersion effects, σx is such
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that the horizontal envelope (defined as the interval spanning ±10% of the max-

imum value of 1 in F(x, z)) of the forcing encompasses two horizontal wave-

lengths. The horizontal domain dimension and resolution are quadrupled,

with respect to those listed in §6.1, to prevent spurious interactions of the wave

packet with its periodic image and to maintain the same number of horizontal

grid points per wave length. The wave packet is initially centered at x = Lx/2,

where the forcing itself remains centered throughout its entire duration (one

wave period).

Two-dimensional contours of the horizontal velocity field (fig. 6.6) at t = 5 Tw

show a significantly weaker, horizontally inhomogeneous, negatively oriented

jet-like flow behind the rear of the wave packet. It can also be seen that the

IGW packet has undergone weaker structural modulation at its rear end. A

vertical profile of the instantaneous horizontal velocity sampled through the

center of the wave packet at t = Tw and 5 Tw (fig. 6.7) shows that the wave

packet at t = 5 Tw has experienced only a 30% decay of its initial amplitude

with pronouncedly weaker structural modulations relative to its horizontally

periodic counterpart. In § 6.4.4, we further explore the underlying cause for

the observed reduction in the strength of the mean flow for the horizontally

localized wave packet and assess the validity of the Jones & Houghton (1972)

conjecture on horizontal pressure gradients driving suppression of horizontal

streaming of a horizontally localized IGW packet.
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Figure 6.6: Two-dimensional contours of the horizontal velocity field at
t = 5Tw in a fully nonlinear simulation of a both vertically and
horizontally localized wave packet,, for Ri = 1.

Figure 6.7: Vertical profile of the instantaneous horizontal velocity at
the instantaneous wave packet center, xc, compared at t =
Tw and 5 Tw in a fully nonlinear simulation of a both vertically
and horizontally localized wave packet, for Ri = 1.
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6.4 Model for wave packet deformation

6.4.1 Mean flow evolution equation and scaling

Decomposing the instantaneous velocity field u(x, z, t) into the sum of a hori-

zontal average (denoted by an overbar) U(z, t) and an associated perturbation

[u′(x, z, t),w′(x, z, t)] it can be shown that, for two-dimensional, non-rotating,

stratified flow, which is statistically homogeneous in x (which is valid for an

IGW that is infinitely periodic in the horizontal when the averaging interval is

λx), the evolution equation for the mean horizontal velocity is given by

∂U
∂t
= −∂u′w′

∂z
+ ν

∂2U
∂z

, (6.7)

which is the same equation as that considered by Zikanov & Slinn (2001)

and Scinocca & Shepherd (1992), with the latter focusing on the inviscid ver-

sion.

The mean flow is, therefore, driven by the Reynolds stress gradient and vis-

cous attenuation. For ideal, space-filling IGWs, the Reynolds stress takes on

a uniform value in the region occupied by the waves and thus cannot in-

duce a mean flow. However, strong vertical localization can introduce non-

negligible vertical variations in the Reynolds stress and, as a result, a strong

mean flow. Lighthill (1978) argued that, in the laboratory, the mean force result-

ing from viscous attenuation can be cancelled by horizontal pressure gradients

that may be easily set up in a finite-size container (presumably due to free sur-

face tilting).

By neglecting the viscous term (an assumption justified by the values of
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Reynolds number considered in this study), equation (6.7) simplifies to:

∂U
∂t
= −∂u′w′

∂z
. (6.8)

Note that due to the periodicity of the forcing terms, they do not appear in both

equations (6.7) and (6.8). Thus, these equations represent the mean flow veloc-

ity that forms not only when the forcing is active but also when a localized IGW

packet freely propagates away from the source region.

An estimate of the growth in the mean horizontal velocity of a vertically lo-

calized IGW packet during one wave period Tw = 2π/ω may be obtained by

appropriately non-dimensionalizing equation (6.8). The characteristic velocity

and time scales are chosen to be Au = AUo m/k = Aζω tan(θ) and 1/ω, respec-

tively. The characteristic length scale is that of the Reynolds stress variation in

the vertical, i.e. σ. Equation (6.8) now becomes:

∂U∗

∂t∗
= −

Aζ

λx

tan(θ)
γ

∂u′∗w′∗

∂z∗
, (6.9)

where stars represent non-dimensional quantities and γ = σ/λx. The growth

of the mean horizontal flow over one wave period therefore scales with

Aζ tan(θ)/(λxγ), i.e. the mean flow is enhanced with increasing wave steepness

and degree of vertical localization of the packet. Furthermore, mean flow for-

mation is enhanced for wave packets that are closer to the hydrostatic limit

(ω/N << 1 for θ → π/2), i.e. near-horizontally propagating waves.

Alternatively, one can write

Aζ

λx

tan(θ)
γ
= A/

√
Ri

tan(θ)
γ ω/N

, (6.10)
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Figure 6.8: Richardson number-rescaled mean flow profiles in fully non-
linear simulations of a horizontally periodic, vertically local-
ized wave packet at Ri = 1 and 16.

which quantifies the scaling of the mean flow velocity as a function of input

parameters (see table 6.1 ). Thus, equation (6.10) indicates that for a fixed non-

dimensional vertical velocity amplitude A, wave number inclination angle θ

and degree of vertical localization γ, wave packets operating in weaker strat-

ifications are more susceptible to mean flow generation, as they are bound to

have higher steepness (i.e. larger Aζ/λx).

If one rescales the mean flow velocity profiles of the Ri = 1 and 16 cases

with
√

Ri, the profiles are found to coincide at t = Tw, (figure 6.8). At t = 5Tw,

the scaled profiles nearly coincide over their negative jet portion but show sig-

nificant differences over the positive jet component. This deviation suggests

that the proposed scaling does not accurately capture the highly nonlinear later

stages of the wave-mean flow interaction (apparently intensified with the large

wave steepness in the Ri = 1 case) in which the mean flow becomes strong

enough to modify the initially prescribed wave field characteristics upon which
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the current scaling is based.

6.4.2 Approximate solution at early times

At sufficiently early time, i.e. when the forcing is active (0 < t < Tw), the

mean flow is not found to grow enough to significantly alter the structure of

the wave field. The early time evolution of the wave field may therefore be

accurately predicted. Specifically, it is reasonable to assume that the mature

wave-packet resulting from the application of the forcing to an initially quies-

cent flow field, has, to leading order, velocity and density fields that are given

by equations (6.1)-(6.3) with an amplitude Ã(t) that grows in time and a time-

dependent phase φ = kx + mz − ωt.

Furthermore, assuming negligible dispersion, the wave envelope has a struc-

ture that is considered to remain unchanged in time and translates downwards

with the vertical component of the packet’s group velocity, Cgz, as computed

by linear theory. Our observations during the interval 0 < t < Tw confirm the

above assumptions, which are invalidated as soon as significant mean flow be-

gins to form, thus altering the structure of the instantaneous u-velocity field.

The associated Reynolds stress distribution may now be written as

u′w′ = U2
o

(

− Ã2(t)m
k
Φ

2(z, t)cos2φ − Ã2(t)
k
Φ(z, t)Φ′(z, t)cosφsinφ

)

, (6.11)

where Φ(z, t) has the same structure as F(z) in equation (6.4) but with zcen re-

placed by zcen − |Cgz|t to account for the downward propagation of the wave

packet. By evaluating the horizontal averages and substituting them back

124



into (6.8) we have:

∂U
∂t
= U2

o Ã2(t)
m
k
Φ(z, t)Φ′(z, t). (6.12)

To proceed, the amplitude function Ã(t) needs to be defined. In the simu-

lations considered here, during the time of active forcing, the amplitude of the

wave field is found to increase linearly with time as Ã(t) = At/Tw. An estimate

of the initial mean growth may then be obtained by integrating equation (6.12)

from t = 0 to some time t < Tw. For the purpose of integration, the wave packet

is assumed fixed in space in a quasi-static sense ; the time dependence of the

argument of the Gaussian function, Φ, is not taken into account when carrying

out the integration. This assumption is justifiable when the total integration

time is comparable to Tw and, thus, small compared to the significantly longer

wave packet’s vertical propagation time-scale λz/Cgz. The early-time mean flow

is thus computed as

U(z, t) = U2
o

A2

T 2
w

t3 m
3k
Φ(z, t)Φ′(z, t) t < Tw =

2π
ω
. (6.13)

The estimate for mean flow evolution predicted by equation (6.13) is com-

pared to the mean flow obtained from the numerical solution of the fully non-

linear Navier-Stokes equations in figure 6.4 for the baseline case. The analyt-

ical estimate captures quite well the initial structure, amplitude and growth

rate of the numerically generated mean flow up to t = 3/4Tw, when the numer-

ical results exhibit non-negligible, but still small, deviations from the analytical

solution. Beyond this time and as the mean flow continues to grow, the wave-

packet undergoes significant distortions and is no longer faithfully represented

by the velocity fields given by equations (6.1)-(6.2). Consequently, the mean
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flow that is further generated can no longer be predicted by equation (6.13),

as one must consider the changes in the wave velocity field structure. To this

end, a fully nonlinear analysis is needed where the coupling between mean and

wave velocity fields is bi-directional, unlike the uni-directional coupling from

wave to mean flows described above.

6.4.3 Mean flow structure at later times

It is instructive to compare the mean flow observed within the mature IGW

packet, namely when it has moved sufficiently far from the source, with

previous theoretical predictions. Specifically, the mean flow, derived for a

conservative (unforced, inviscid) flow of a freely propagating low-amplitude

IGW (Scinocca & Shepherd, 1992), may be closely approximated by the

second-order-accurate expression for the pseudomomentum Sutherland (2001),

namely:

M(z) = −ωyAζ , (6.14)

whereωy = ∂u′/∂z−∂w′/∂x is the vorticity and Aζ = ρ
′/ |dρ/dz| is the vertical dis-

placement and the overbar denotes averaging over one horizontal wavelength

(as in the previous two sections). Although the above expression is derived for

small amplitude waves, Sutherland (1996) showed, using fully-nonlinear nu-

merical simulations, that the above expression is still accurate within numerical

truncation and round-off errors, even for wave amplitudes close to the break-

ing limit (Sutherland, 2006a).

Figures 6.9(a) and 6.9(b) compare the computed wave pseudomomentum with
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(a) (b)

Figure 6.9: Comparison of the mean horizontal flow profile and the wave
pseudomomentum , M(z), in a fully nonlinear simulation of a
horizontally periodic, vertically compact wave packet at t =
Tw and 5 Tw, for (a) Ri = 1 (b) Ri = 16.

the actual mean horizontal flow at t = Tw and 5Tw for the Ri = 1 and Ri = 16

simulations, respectively. The initial structure of the mean flow, as discussed in

§6.4.2, is composed of a positive and negative jet, whose structure is dictated by

the term Φ(z, t)Φ′(z, t) in equation (6.13). According to figure 6.9(a) and 6.9(b),

the wave pseudomomentum is not characterized by any negatively oriented

flow, whereas its positive component strongly overpredicts the corresponding

mean flow observed inside the source region.

As the forcing is turned off and the wave packet freely moves downward, the

amplitude of the negative jet continues to grow at the expense of the decaying

wave packet. By t = 5Tw, it becomes about half the horizontal velocity magni-

tude, Au, for the Ri = 1 case. At the same time, in the Ri = 16 case, the negative

jet amplitude is very close the vertical velocity magnitude Aw = AU0 = 1/8Au,
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Figure 6.10: Comparison of the mean horizontal flow profiles at t =
10Twand15Tw, in a fully nonlinear simulation of a horizontally
periodic, vertically compact wave packet in a domain with
height Lz = 6λx, for Ri = 16.

which corresponds to a factor of 1/
√

Ri = 4 reduction in the strength of the neg-

ative jet relative to the Ri = 1 case. Figures 6.3 and 6.5 show that during the

same period, the wave packets have decayed by about 50% and 20% of their

initial amplitude in the Ri = 1, 16cases, respectively.

The growth of the negative jet has been further monitored in a special sim-

ulation where the height of the domain (and the vertical resolution) have been

doubled. This growth is found to continue until the weakened and structurally

modulated wave packet completely leaves the forcing region, leaving behind

the negative jet as a steady-state residual mean flow (see fig. 6.10). At this point,

the mature wave packet propagates further out into the ambient and evolves

independently of the generation mechanism and any interaction with the neg-

ative jet.
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Now, the positive jet created during the forcing period remains attached to the

wave packet and propagates with it away from the source. Since the concept of

wave pseudomomentum does not apply for forced IGW packets, it is expected

that it initially overpredicts the positive component of the mean flow. How-

ever, it does predict with increasingly better accuracy the mean flow associated

with the mature wave packet once the wave packet has exited into the ambient

fluid and is no longer subject to the influence of the negative jet. Accordingly,

we refer to the positive jet as the “wave-induced” mean flow to differentiate it

from the negative jet left behind in the source region, which is regarded as a

“residual” mean flow.

For the Ri = 16 run (figure 6.9(b)), the near-Gaussian shape of the computed

wave-induced mean flow is consistent with the shape of the mean flow re-

ported in the low-amplitude simulations of Sutherland (2001, 2006b). At Ri = 1

and t = 5Tw (figure 6.9(a)), however, the wave-induced mean flow exhibits a

non-symmetric profile, with a more diffuse leading edge and a peak near the

rear flank of the packet, agreeing qualitatively with the general shape of the

mean flow in the more hydrostatic (m/k = 2.5) of the large-amplitude cases ex-

amined by Sutherland (2001), which is less hydrostatic than the wave consid-

ered here. The agreement of the wave-induced mean flow and the predicted

pseudomomentum is worse at Ri = 1, i.e. the case with larger steepness, espe-

cially near the trailing edge of the packet, than for the Ri = 16 case. This is,

apparently, a result of the highly nonlinear wave-mean flow feedback (intensi-

fied by the larger wave steepness) which inevitably leads to stronger structural

modulations of the rear flank of the wave packet in the Ri = 1 case.
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6.4.4 Mean flow reduction due to horizontal localization

Understanding the cause underlying the observed reduction of the mean flow

generated by a horizontally localized wave packet requires an appropriate def-

inition of the horizontal averages of velocity and momentum fluxes to enable

objective comparisons with the corresponding metrics for a horizontally peri-

odic wave. To this end, the horizontal mean of a variable a(x, z, t) is defined

as

a(z, t) = lim
`→∞

1
`

x0+`∫

x0

a(x, z, t) dx , (6.15)

where ` is the sampling interval length. For the mean to be well-defined, the

limit must be independent of the initial location x0 around which the limit is

sought. While for a horizontally periodic IGW packet the averaging is clearly

independent of the initial location x0, for a horizontally localized packet the

limit is a function of where the averaging interval starts (i.e. x0). For a horizon-

tally limited monochromatic IGW packet, it is possible to separate the wave

form into an equivalent mean (as defined by equation 6.15) and a pure periodic

wave-like component through phase averaging. Specifically, the phase average

operator 〈 〉 is defined as (see Reynolds & Hussain (1972); Finnigan et al. (1984))

〈a(x, z, t)〉 = a(z, t) + ã(x, z, t) = lim
N→∞

1
N

N∑

n=1

a(x ± nλx, z, t). (6.16)

The phase-averaged wave form 〈a(x, z, t)〉 is therefore the ensemble aver-

age of a sequence of all points along the x direction which have the same

phase with respect to a reference wavelength (here taken as the IGW horizon-

tal wavelength λx). Moreover, ã(x, z, t) is a horizontally periodic signal with
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a wavelength λx. However, on account of the the horizontal variation of the

“local” energy density per wavelength inside the horizontally localized IGW

packet, the amplitude of 〈a(x, z, t)〉 is less than the maximum value of the orig-

inal wave, a(x, z, t). The desired horizontal mean a(z, t) can then be retrieved

from the phase averaged wave form by taking its horizontal average over one

wavelength λx, i.e.

a(z, t) = 〈a(x, z, t)〉, (6.17)

since the average of ã(x, z, t) vanishes. The quantity 〈a(x, z, t)〉 may then be di-

rectly compared to its counterpart for a horizontally periodic wave. Note that,

computationally, the sum over N in equation (6.16) is limited to the effective

width of the wave packet (defined as the interval spanning ±10% the maxi-

mum value of u(x, t) at the particular z-location) to avoid artificial damping of

the mean field 〈a(x, z, t)〉.

Now, consider the conservative form of the inviscid horizontal momentum

equation for the wave field namely

∂u′

∂t
= −∂u′u′

∂x
− ∂u′w′

∂z
− ∂p′

∂x
. (6.18)

Taking the phase average of both sides of equation (6.18) followed by the

horizontal average, we obtain

∂U
∂t
= −〈∂u′u′

∂x
〉

︸    ︷︷    ︸

I

−〈∂u′w′

∂z
〉

︸     ︷︷     ︸

II

−〈∂p′

∂x
〉

︸  ︷︷  ︸

III

, (6.19)

where U(z, t) is the mean horizontal velocity. By numerically evaluating each of
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Figure 6.11: Vertical profiles of the sum of all the r.h.s. terms of equation
(18) (I + II + III)/(Au/Tw) and the second term II/(Au/Tw), in
a fully nonlinear simulation of a horizontally as well as verti-
cally localized wave packet at t = Tw, for Ri = 1.

the three terms on the right hand side of (6.19), one can identify the dominant

term which drives the observed mean flow formation. Figure 6.11 compares

the vertical profiles of the sum of the r.h.s. terms of equation (6.19), I + II +

III, normalized by(Au/Tw) to the vertical profile of the second term II/(Au/Tw).

We have found (not shown) that both the pressure gradient term III and the

horizontal gradient of the wave Reynolds stress term I strongly oscillate in the

vertical with a phase shift such that their individual profiles tend to cancel each

other out. It can be seen from figure 6.11 that indeed the r.h.s. of Equation (6.19)

is dominated by the vertical gradient of the wave Reynolds stress. The sum of

all three terms fluctuates around II/(Au/Tw) with a standard deviation of about

14%. The dominance of the second term in equation (6.19) is found to persist

over the course of the entire simulation.

The magnitude of the vertical gradient (not shown) of the wave Reynolds

stress at t = Tw for the horizontally localized wave is found to be approximately
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half of the corresponding value for the horizontally periodic wave. This reduc-

tion in the strength of the Reynolds stress gradient is nearly commensurate

with the observed reduction of the strength of the mean flow of the horizon-

tally localized packet (computed by phase averaging followed by horizontal

averaging of the horizontal velocity field) with respect to the mean flow of the

horizontally periodic packet (figure 6.12)

The mean flow reduction in a horizontally localized IGW packet, as com-

pared to its horizontally periodic counterpart, is thus primarily driven by the

reduced magnitude of the vertical gradient of the wave Reynolds stress which

stems from the reduced wave energy density per horizontal wavelength. Both

the horizontal gradient of the Reynolds stress and the horizontal pressure gra-

dient play a secondary role in the evolution of the horizontal mean flow. Ac-

cordingly Jones & Houghton (1972) claim about the possible role of horizon-

tal pressure gradients in reducing the mean horizontal flow seems to be non-

applicable.

6.4.5 Residual mean flow containment techniques

Two different strategies are considered towards containing the residual mean

horizontal flow in the forcing region to prevent any disruptive interactions

with the propagating wave packet. To this end, i.e. to enable the formation

of a robust mature wave packet but also to prevent the spurious suppression

of energy transfer to a pre-existing mean flow (a background current in mid-

water/air or along a boundary), the particular technique under consideration

must be switched-off at an appropriate time or be restricted to the wave gener-

ation region which, by design, should be sufficiently removed from the inter-
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Figure 6.12: Comparison of the numerical computed horizontal mean flow
for a horizontally periodic and a horizontally localized IGW
packet at t = Tw, for Ri = 1.

action region.

The first mean flow containment technique relies on assuming a horizontally

periodic wave field. It involves the explicit removal of the mean horizontal

flow component from the corresponding instantaneous velocity component af-

ter each time step. The approach is similar to that of Zikanov & Slinn (2001),

who, however, remove the plane average of the along-slope velocity compo-

nent, as this direction is periodic, statistically homogeneous and normal to the

gravity vector (they note that any mean flow component in the up/down slope

will be opposed by gravity and should be minimum). In the first phase of

their simulation, they activate the mean flow removal technique throughout

the computational domain. However, to avoid artificial suppression of the

along-slope current in the second phase of their simulation, where the waves

approach the sloping boundary and reflect off of it, the mean current removal

is restricted to the upper 60%of the computational domain.
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For the problem geometry considered here, i.e. a two-dimensional rectan-

gular domain where the x-direction is normal to the gravity vector, the mean

flow can be removed by setting the zero Fourier mode of the horizontal veloc-

ity field to zero. The zero Fourier mode deactivation region is delineated by a

slowly varying window with a broad Gaussian envelope which smoothly cou-

ples the forcing region with the exterior fluid. This technique may be readily

implemented in codes using Fourier discretization in the horizontal and is eas-

ily adaptable to algorithms using other discretizations (e.g. finite volume or

finite difference) in horizontally periodic domains. In the latter case, one can

directly calculate the mean flow through equation (6.5) and subtract it off the

horizontal velocity field after each time step.

Motivated by equation (6.12), another technique for mean flow removal is now

proposed. The technique involves the incorporation of a sink term in the r.h.s.

of the horizontal momentum equation. The term is equal and opposite in mag-

nitude to the rate of change of the mean horizontal flow. For the horizontally

periodic wave packet, the form of this absorbing term is simply the negative of

the r.h.s. of equation (6.12):

Ft = −U2
o Ã2 m

k
Φ(z)Φ′(z) . (6.20)

The U2
o Ã2m

k
factor in the above forcing term is approximated by the product of

the absolute value of the instantaneous horizontal and vertical velocities at the

center of the wave packet after each time step. The vertical coordinate of the

instantaneous wave packet center is calculated as the location in the vertical

profile of the wave packet’s horizontal velocity (sampled at x = Lx/2) where an

absolute maximum is attained. This location serves as the instantaneous origin

for the functions Φ(z) and Φ′(z).
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Figure 6.13: Comparison of the mean horizontal flow in a fully nonlinear
simulation and linear simulations, along with simulations in
which either the zero Fourier mode is removed or the pro-
posed mean flow absorbing term is used, for a horizontally
periodic vertically localized wave packet at t = 5Tw, with
Ri = 1 (note that the mean flow is zero everwhere in both
the linear simulation and that with the zero Fourier mode re-
moved).

Two separate simulations have been run where each of the mean flow con-

tainment techniques is implemented throughout the full duration of the sim-

ulation for an IGW packet in the absence of any background flow. An addi-

tional run has been performed where the nonlinear terms are “turned off” but

the zero-Fourier mode is left untouched for the entire run. The results from

all three cases are compared in figure 6.13. The mean flow is identically zero

when either the nonlinear terms or the zero Fourier mode are absent. Thus,

as indicated by equation (6.7), the observed wave-induced mean flow is driven

by nonlinear effects with no energy deposited in higher horizontal harmonics.

When a sink term is used, a very weak mean flow develops over the course

of the simulation. When examining the wave packet’s instantaneous structure

in figure 6.14, it can be seen that, apart from dispersion effects typical of large
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Figure 6.14: Vertical profile of the instantaneous horizontal velocity at
x = Lx/2, compared at t = Tw and 5 Tw in a fully nonlinear
simulation of a horizontally periodic vertically localized wave
packet in which the mean flow absorbing term is used, for
Ri = 1.

amplitude IGWs, the wave packet has preserved its initial spatial structure and

decayed by less than 5% of its initial amplitude.

6.4.6 Critical level interaction

The viability of the mean flow containment techniques, particularly the zero

Fourier mode removal, is further tested in the framework of the critical layer

interaction of a large amplitude, horizontally periodic, vertically compact IGW

packet with a Gaussian background shear flow. The simulation parameters are

chosen to match the baseline case described in table 6.1. The background cur-

rent is configured to be the same (summarized in table 6.2) with that used in
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Table 6.2: Values for additional parameters relevant to critical level sim-
ulation: Unless otherwise listed, all other parameters have the
same value as in the baseline case described in table 6.1.

Parameter Value

Lz/λx 1.8

σshear L
√

(0.08)2/ − 2 ln(1/2)

(zcen/Lx) f orcing 1.2

(zcen/Lx)shear 0.325

Us 1.5ω/κ

the simulation of Winters & D’Asaro (1989). Its profile has the same shape as in

equation (6.4) but with a with a magnitude (Us in table 6.2) such that a critical

level is initially established at z/L ≈ 0.39.

Winters & D’Asaro (1989) found that, because of the associated mean flow ac-

celeration, the vertical location of the critical level is displaced upward towards

the wave source. Therefore, adequate resolution within the vicinity of the ini-

tial location of the critical level is imperative and is enabled through the mul-

tidomain scheme. A little over two subdomains are assigned to the dominant

nonlinear critical layer thickness. The onset of instability at the critical level

generates higher horizontal wave numbers than those supported by the initial

horizontal resolution of Nx = 128grid points. Thus, to avoid aliasing effects, a

regridding procedure is applied wherein the horizontal resolution is changed

to Nx = 256 as the wave reaches the interaction region, and a final regridding

to Nx = 512 is implemented few buoyancy periods before the instability onset.

The wave packet reaches the interaction region by Nt ≈ 35 where it is trapped

near the critical level. The diminishing vertical wavelength leads to intensifica-
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Figure 6.15: Mean flow evolution during the wave-shear flow interaction
for the critical level simulation

tion of the wave shear. The resulting discontinuity in the wave Reynolds stress

leads to exchange of momentum with the background shear flow resulting in

its acceleration as seen in figure 6.15.

The development of the instability is best illustrated by considering the evo-

lution of the vorticity field in the highly resolved interaction region. As the

wave packet approaches the critical level, the constant phase bands of its vor-

ticity field (figure 6.16(a)) tilt closer to the horizontal direction in the deceler-

ating front of the packet than in its rear, as it is in the former region where the

vertical wavelength decreases and the energy density increases. Beyond this

point, the vorticity near the critical level starts to intensify in response to the

increase in the wave shear. By Nt ≈ 52, localized instabilities are visible close

to the critical level (figure 6.16(a)) which then give way to the rapid emergence

of distinct Kelvin-Helmholtz billows along the entire critical layer region (fig-

ure 6.16(b)) confirming that in a two-dimensional framework, as noted by Win-

ters & D’Asaro (1989) and Lin et al. (1993), this instability is shear-driven.
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(a)

(b)

Figure 6.16: Two dimensional contours of the vorticity field for the critical
level simulation (a) Nt = 52 (b) Nt = 55. The min/max range
for the colorbar for the two snapshots is symmetric aboutωy =

0 to ±(|ωmax
y | + |ωmin

y |)/2 at Nt = 50 (i.e. close to the onset of the
shear instability).
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6.5 Discussion

6.5.1 Mature wave-packet: generation via mechanical forcing

vs. impulsive introduction

The focus of the present study is on the numerical generation of IGW’s through

the incorporation of explicit forcing terms into the governing equations. Forc-

ing terms serve as a more generalizable approach which is amenable to the gen-

eration of either wave packets or continuous wave trains. However, the results

of this work are also applicable to simulations of IGW’s with equivalent ini-

tial conditions. In this case, when a mature wave packet is directly introduced,

with the initial wave velocity and field prescribed by equations (6.1)-(6.3), there

is no mean flow present at time t = 0 by virtue of horizontal periodicity. Fol-

lowing the analysis of §6.4.2, the initially developing mean flow will establish

the same spatial structure with the forced system. The early-time growth rate

of the mean flow is linear and with a constant growth coefficient Ã(t) = A. In

contrast, in the forced system, the mature wave packet, which requires one

wave period to form, is already accompanied by a weak mean flow (see figure

6.8) that has developed with a cubic growth rate as indicated by equation (6.13).

For both cases, the later stages of the wave mean-flow interactions are expected

to be similar to what is described in §6.4.3. As the core of the interaction occurs

once the forcing has been switched off after one wave period, the weak mean

flow established after one wave period in the forced approach is not likely to

significantly alter the wave residual mean flow interaction.

However, the presence of forcing may enhance the accumulation of energy in

141



the forcing region in the form of a non-propagating component of the solution,

as compared to an equivalent simulation with initial conditions, through other

mechanisms than those described above. Specifically, it can further be argued

that, because the forcing is abruptly turned on and off, additional (typically

higher) frequencies are introduced beyond the primary frequency. Also as the

the vertical Gaussian envelope of the forcing narrows in the physical space,

its spectral support increases, resulting in the introduction of additional verti-

cal length scales beyond the primary vertical wavelength of the wave packet.

For a specified horizontal wavelength, these additional vertical length scales

may not match either the forcing frequency or the additional frequencies in-

troduced by the transient nature of the forcing and the associated energy may

remain trapped in the source region. Note, however, that several test simu-

lations were run in which the forcing terms were gradually ramped up and

down over an interval [0, 2Tw]. On one hand, little reduction in the strength of

the residual mean flow component was observed. On the other, the resulting

wave packet developed an envelope that was broader than desired, leading to

enhanced dispersion.

6.5.2 Generation of an internal wave train

Issues with mean flow formation are also relevant in the framework of the con-

tinuous generation of IGWs, as already reported by Zikanov & Slinn (2001).

What they describe as a “transient mean flow associated with the propagat-

ing front of the wave” is near-equivalent to the mean flow induced by the

mature wave packet. The mean flow generated in their forcing region, how-

ever, is the equivalent of the negative jet discussed in §6.4.2 and §6.4.3 . In

terms of the problem geometry they consider, the establishment of a statisti-
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cally steady state of wave reflection (and possible breakdown into turbulence)

near the bottom boundary requires persistent injection of energy into the ver-

tically limited forcing region to generate a wave train. Over longer times, on

account of the vertical gradient of the Reynolds stress that is established in the

forcing region (see also equation (6.9) ), a non-negligible residual mean flow

will inevitably develop therein which will significantly alter the propagating

wave packet through the mechanism described in §6.4.2 and §6.4.3. Despite

differences in the nature of the wave forcing (body force terms in the govern-

ing equations vs. physical wave generator ; see the next section), such a mecha-

nism may not only be operative in numerical simulations but also in equivalent

laboratory experiments, as the formation of disruptive horizontal currents that

significantly contaminate the source region have been reported to us (T. Pea-

cock, personal communication).

6.5.3 Additional connections with the laboratory and nature

In a computational setting, the use of a body force term in the governing equa-

tions allows for the fluid within the source region to move freely. In contrast,

in the laboratory, the internal wave generator is a mechanical device within

which no fluid motion is possible (Gostiaux, Didelle, Mercier & Dauxois, 2007).

Furthermore, lab-space limitations require that such a device be inevitably lo-

calized in the horizontal, which is expected to significantly reduce the mean

flow, as suggested by §3.2. In addition, any externally imposed incidental hor-

izontal pressure gradients may also act to oppose horizontal streaming, as pro-

posed by Lighthill (1978). Most importantly though, confinement effects of the

tank/container walls in a small-scale facility can strongly impede the formation

and sustenance of a horizontal mean flow. Now, for the particular case when
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IGWs are excited by the oscillation of a vertical cylinder in a stratified fluid,

waves are observed to propagate in a Saint Andrew’s cross pattern (Mowbray

& Rarity, 1967). The inherent symmetry of this particular set-up suggests that

the residual mean flows induced by the generation of the oppositely moving

waves can potentially cancel one another. Note that symmetry may also act to

reduce the impact of the residual mean flow in equivalent numerical simula-

tions, such as the one reported in Javam & Redekopp (1998).

In the ocean and atmosphere, IGWs are usually generated by a source of fi-

nite scale and, as a result, have dimensions that are comparable to those of the

source, as suggested in Appleby & Crighton (1987); Hurley & Keady (1997).

Furthermore, in such settings, horizontal and vertical confinement are typically

not an issue. Thus, under sufficiently strong and vertically localized periodic

forcing, strong residual horizontal currents could be produced for either IGW

packets or wave trains at the respective generation site. A favorable situation

where this may happen is a sufficiently nonlinear internal tide operating over

a particular geometry of bottom topography in the deeper ocean (see Peacock,

Echeverri & Balmforth, 2008).
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Concluding remarks

7.1.1 Wake-generated internal gravity waves

The first half of the thesis has investigated the generation of internal gravity

waves by the turbulent wake of a towed sphere in a linearly stratified fluid.

For this specific flow, we have conducted the first (to the best of our knowl-

edge) quantification of the wave field properties, in the near field of the wake,

using LES of the fully nonlinear governing equations over a broad range of Re

and Fr.

We have used continuous wavelet transforms to quantify the horizontal wave-

lengths of the energetically dominant internal waves on prescribed horizontal

planes close to, but outside, the turbulent wake edge. The wavelet transform

has estimated the horizontal wavelength of the wave field and allowed us to

understand and assess its spatial variability over the entire horizontal plane un-

der consideration. The estimated wavelengths obtained from two independent

wavelet analyses based on the cylindrical Arc wavelet and the directionally bi-

ased Morlet2D wavelets are in close agreement. On one hand, this agreement

indicates that the calculated wavelengths are accurate and reliable estimates of

the internal wave field wavelengths. On the other hand, it implies that the ob-

served orientations of the quasi-random wave field, on a particular horizontal

plane, are highly concentrated around a mean direction that is independent of

either Re or Fr.
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The estimated horizontal wavelengths, and their subsequent decay rates, are

found to be dependent on both Re and Fr, with an empirical Fr1/4 scaling and

decay rates significantly slower than the 1/Nt characteristic of internal waves

emitted by an impulsive point mass source. For the first time, the dependence

of the horizontal wavelength on both Re and Fr has been reported.

The frequencies of the IGWs are obtained from one-dimensional wavelet trans-

forms of multiple time series at several streamwise and spanwise locations on

the horizontal planes. The linear dispersion relation was used to obtain the

angle of the phase line tilt to the vertical and the vertical wavelength. In agree-

ment with the properties of turbulence-generated IGWs reported in previous

studies, the angle values are found to lie in a rather narrow range θ ∈ [27−50◦],

however, this study additionally establishes the connection of the underlying

selection mechanisms to Re. The results suggest that at low Re, the coupling

of the waves to the turbulent wake region is not strong and that the selection

is merely based on the capabilities of the waves to propagate away from the

turbulent region while experiencing the minimum viscous decay as they move

at the maximum possible vertical group velocity. At high Re, however, the

prevalent angles indicate that the waves are likely to be strongly coupled to the

turbulent region dynamics as they most efficiently extract horizontal momen-

tum from the wake region.

The vertical group velocity of the internal wave field is empirically found to

scale as Fr−3/4 scaling, independent of Re. Accordingly, under navally rele-

vant conditions (Fr = O(200)), the wake-emitted waves are expected to move

vertically towards the ocean surface at even slower rates. Even though wake-
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radiated internal waves reach the surface at the same rate, independent of Re,

internal waves radiated by a high Re wake are found in locations that are fur-

ther offset from the wake axis in the spanwise direction. This can be explained

on the basis of persistence of wave emission by the turbulent wake for much

longer time and the continued increase in the horizontal width of the wake at

high Re.

The estimated isopycnal displacement amplitude and the steepness of the

waves increase with both Re and Fr, indicating that the waves become more

nonlinear and thus more vulnerable to instabilities and breaking as both pa-

rameters increase. The increase of the displacement amplitude in weak strat-

ification (high Fr) is in agreement with previous measurements, however the

proposed increase with Re has not yet been verified experimentally. Extrapo-

lating this result to navally relevant parameter values implies that the waves

under these conditions are even more likely to break remotely into small scale

turbulence and potentially expose the turbulence generating source. From an

oceanographic and geophysical standpoint, the wave breaking and the ensu-

ing turbulence act as a localized source of mixing in the water column. From

energetics point of view, the increase in the displacement amplitude with Re

indicates that there is more energy available for the wave field at high Re.

Explicating and resolving the dependence of the horizontal wave length and

the displacement field on either Re or Fr requires understanding of the underly-

ing generation mechanisms of the internal wave field. Questions are still open

on the connection between the observed wave properties and the dynamics of

the turbulent wakes. For example; how are the observed length scales relate

to the turbulence length scales such as the pancake eddy scales or the spacing
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between them and how are the frequencies of the waves relate to the frequency

spectrum of the turbulence? Answers to these questions can possibly help the-

oreticians formulate new wave generation theories. Finally, the energetics of

the wave emission by the turbulent wake such the wave momentum and en-

ergy flux can help in understanding the possible impact of the wave emission

process on the dynamics of the turbulent wake and explain the coupling be-

tween the waves and their turbulent source region. Oceanographers are par-

ticularly interested in knowing answers to these questions as there are almost

no available measurements of wave energy fluxes radiated from the wakes of

submerged topography (seamount) or a headland/island in a strongly strati-

fied water.

This study has established a comprehensive parametrization of the internal

wave field emitted by a stratified turbulent wake of a towed sphere. It is hoped

that such parametrization will guide new theoretical studies of wave genera-

tion mechanisms and will also help researchers improve the current sub-grid

scale models and understand the impact of small scale processes on large scale

atmospheric and oceanic flow problems.

7.1.2 Numerically forced internal gravity waves

In the second half of the thesis, the formation of strong mean horizontal flows

in the wave generation region has been examined in two-dimensional numer-

ical simulations of internal gravity wave (IGW) packets where the waves are

generated by incorporating mechanical forcing terms into the incompressible

Navier-Stokes equations. The observed mean flows are, in part, a direct result

of modeling the vertically localized forcing based on a solution to the linearized
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inviscid internal wave equations, yet introducing it at large amplitude into the

fully nonlinear governing equations. As a result, a vertically localized gradient

in the Reynolds stress field emerges within the source region giving rise to an

opposing horizontal current which distorts the prescribed structure of the IGW

packet and depletes it of its energy as the wave packet moves into the ambient

fluid.

At early times, a simple mathematical model, based on a uni-directional cou-

pling from the wave to the mean flow, accurately predicts the time structure

of the horizontal mean flow, which consists of two counter-flowing jets. The

jet oriented against the horizontal group velocity of the wave packet remains

trapped within the forcing region as a residual mean flow. The jet component

aligned with the horizontal wave group velocity remains attached to the IGW

as the wave propagates away from the forcing region. Sufficiently far from the

source, the structure of the latter component of the mean flow is predicted rea-

sonably well by the correlation of vertical displacement and vorticity fields.

Scaling arguments indicate that the mean flow is enhanced with a stronger de-

gree of localization of the forcing, higher degree of hydrostaticity and increas-

ing wave packet steepness. Equivalently, it is enhanced with weaker strati-

fication and higher IGW amplitude and degree of hydrostaticity. Horizontal

localization is found to appreciably reduce the strength of the mean flow as a

result of the reduced vertical gradient of the wave Reynolds stress field on ac-

count of the reduced wave energy density per wavelength.

In the particular flow solver under consideration, the mean flow may be elim-

inated by setting to zero the horizontal zero Fourier mode. A more generaliz-
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able approach consists of incorporating appropriately designed sink terms into

the solver which also account for the propagation of the wave packet. With

either of the above techniques, care must be taken that they are appropriately

de-activated to avoid the spurious suppression of any physically-driven mean

flow formation as in the enhancement of flow along a sloping boundary or the

transfer of momentum to a background current in mid-water or air.

The findings of this study are of particular value towards designing robust

computational process studies of the above mentioned types of remote inter-

action of an IGW packet (or a continuously forced wavetrain) where the wave

amplitude range is required to be as broad as possible. Insight into the under-

lying physics of near-source horizontal currents in laboratory experiments of

persistently forced IGW beams may also be obtained. Furthermore, we conjec-

ture that similar horizontal currents may form in the flow of the oceanic internal

tide over bottom topography in the strongly nonlinear regime.

An idealized numerical process study of the amplitude sensitivity of a remote

interaction of a highly vertically localized and well-defined, in terms of enve-

lope and primary frequency and wavelength, IGW packet, in which any distor-

tions to wave structure and amplitude are contained through the approaches

outlined in §6.4.5, is undoubtedly highly instructive. However, strong vertical

localization is imposed by practical limitations in computational resources and

not necessarily geophysical considerations. A process-focused simulation of a

wave packet that is broader in the vertical can be prohibitively costly, especially

when three-dimensional dynamics within the interaction region are of interest.

The concept of a “self-destructing” IGW was originally considered by Jones &
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Houghton (1972). Specifically, an initially weak amplitude IGW packet, which

has propagated upward, over sufficiently large distances, through a compress-

ible atmosphere and a background density gradient decreasing with altitude,

can experience significant amplification. This amplification may be of such an

extent that the weak precursors of the wave at its leading edge are able to sig-

nificantly modify the background flow state by creating a strong local mean

flow in an otherwise quiescent atmosphere. As the bulk of the wave packet

reaches the altitude where the mean flow has previously been created, a criti-

cal level forms and the wave breaks down and dissipates. While this common

situation leads to strong modification of the wave structure and possible break-

down into turbulence, it happens far from the wave generation site (where the

waves are presumably weak in amplitude during the wave generation) as large

propagation distances are needed for significant wave growth.

This study is focused on the near source non-linearities of an IGW packet

(in an incompressible flow) which can lead to intense structural changes within

the generated wave field. A relevant though different inquiry may thus be

posed: in nature, is it physically possible for a large amplitude strongly ver-

tically localized IGW packet to form and, moreover, propagate over even a

short distance away from its source (in what might effectively be a uniform

stratification) while preserving a well-defined envelope and well-defined pri-

mary frequency and wavelength ? Consequently, in a computational process

study how legitimate is it (in the context of the actual oceanic and atmospheric

physics) to suppress any mean flow that develops within an IGW packet before

any remote interactions occur ? Both of these questions may ultimately have

to be taken into account in the formulation of ray theory-based models (Brout-

man, Rottman & Eckert, 2004) if and when large-amplitude IGW packets are

considered.

151



7.2 Future work

The research considered here essentially focuses on the aspects of the near

source region of IGWs whether the waves are naturally excited by the turbu-

lence or through external forcing. A natural extension to the current research

work is to focus on the waves as they move away from the source region and

interact with typical atmospheric/oceanic environments.

An extension to the wake-generated IGW analysis provided in this thesis is

to consider horizontal planes far from the wake center line and to quantify any

changes in the wave properties as they move away from their source. This sug-

gested study will shed some light on the importance of non-linear interactions

between the waves and also the impact of viscous decay over significant prop-

agation distances. Computational resource limitations will be a deciding factor

in how much distance, far away from the source, one might be able to simulate.

In this regard, discretizations of the governing equations based on non-uniform

grids (such as the current multi-domain scheme) will be convenient as they nat-

urally allow maximum flexibility in deploying the available resolution where

it is most needed.

The research subject of this thesis is, for the most part, mainly concerned with

the propagation of internal waves in simplified environments where the back-

ground stratification is uniform and there is no background shear flow. In a

typical geophysical setting, IGWs are more likely to encounter significant local

variations in the stratification profile such as in the ocean pycnocline where the

buoyancy frequency of the medium increases abruptly over a relatively short

vertical distance or in the surface/bottom mixed layer. Variations of the strat-
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ification profile of the medium lead to complex phenomena including wave

transmission, reflection, absorption, ducting and tunnelling.

We are currently collaborating with Drs. Scott Wunsch and Alan Brandt at

Johns Hopkins University who are currently conducting experiments on the

interaction of a forced internal wave beam with a pycnocline both in the pres-

ence and absence of a background current. We are aiding and guiding their

experimental efforts as they are complicated by a variety of factors (tank size

limitations, boundary reflection, image distortions for large amplitude waves

and inevitable experimental noise-related errors) that can be eliminated or at

least minimized in a controlled numerical simulation. A first set of simula-

tions, for the interaction of a beam with a pycnocline with a fixed thickness but

with varying maximum strength of the pycnocline stratification profile, were

run by Michael Richter; a senior undergraduate researcher who was trained

and guided by the author of this thesis and his thesis advisor. Reflection and

transmission coefficients (fractions of incident energy that are transported into

and reflected from the transition region, respectively) were calculated and com-

pared to their experiments. The initial results helped our collaborators confirm

that the measured reflection coefficients for large jumps in the stratification pro-

file were mainly an experimental noise. Future simulations will offer signifi-

cant insight and answers to many questions such as:

• The impact of the maximum stratification strength inside the pynocline

on the reflection and transmission coefficients.

• The importance of the pycnocline thickness of for a given maximum strat-

ification strength.

• The effect of the incidence angle as a representation for IGW excitation at
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the driving/source frequency and its subharmonics.

• The significance of incident wave steepness on the observed wave dy-

namics.

• The evolution of the wave phase velocity inside the pycnocline. The an-

swer for this question will help in the interpretation of future experiments

where shear layers will be collocated with the stratification profile inside

the pycnolcine as it sets the location of the critical level.

Finally, future efforts will also focus on the remote signature of the wake-

radiated waves by examining their interactions with the subsurface region.The

research is motivated by the need to understand and quantify remote detection

of submerged turbulence and internal waves in the ocean by optical and radar

images. In this regard, hypotheses and predictions based on fossil turbulence

theories (Gibson, 1982; Dillon, 1984; Gibson, 1986; Keeler, Bondur & Gibson,

2005) can be tested against fully nonlinear LES and possibly improved on.
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APPENDIX A

TESTING THE CONTINUOUS WAVELET TRANSFORM CODE

The ability of the CWT to identify the frequency components of a 1D temporal

signal can be demonstrated through the so-called “chirp” signal in which the

frequency increases continuously over time. Figures A.1(a), and (b) shows the

signal in the time and wavelet space, respectively. The chirp segment occupies

the middle third of the signal (n/3 < t < 2n/3). The transform plot, from left

to right, shows peaks at decreasing scale. Note the decrease in the transform

amplitude with increasing scale that reflects the continual decrease in the reso-

lution of the CWT at progressively larger scales (i.e. as the scales approach the

window/signal size) in a finite-sized signal.

The ability of the CWT to recognize intermittent features of a signal is seen in

Fig. A.2(a) where two localized wavepackets appear at different times within

the signal. The transform plot, Fig. A.2(b) shows two circular like regions rep-

resenting the frequency content of the wave packets. The center of the band

of influence occurs at the dominant frequency associated with the wave packet

at the same time in which the wavepacket attains its maximum amplitude in

Fig. A.2(a). Figure A.3 further demonstrates the reduced degree of resolution

of a low frequency wave packet compared to a high frequency one.

Now, the 2D Arc wavelet is used to detect the scales comprising a 2D spatial

signal. The result of the transform in this case is a 3D cube of data representing

the local values of the modulus of the transform across all scales at all points

on the xy plane. As an example, Fig. A.4(a) shows a 2D signal composed of

one wave number oriented at 45◦ to the x axis. For such a simple signal it suf-
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(a) (b)

Figure A.1: A chirp signal: (a) time domain (b) wavelet domain

(a) (b)

Figure A.2: Same frequency at two different times: (a) time domain (b)
wavelet domain
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(a) (b)

Figure A.3: Two different frequencies at two different times: (a) time do-
main (b) wavelet domain

fices to look at the variation of the plane averaged values of the modulus of the

transform with scale as a measure of scale-based resonance. The idea of plane

averaging seems to contradict the purpose of the wavelet analysis which is re-

vealing spatial distribution of the scales of resonance. However, once again,

this simple choice of interpreting the modulus of the CWT is acceptable for

this highly idealized signal. Figure A.4(b) shows that the peak of the modu-

lus of the transform occurs at the expected scale. The convenience of having a

non-directional wavelet transform can be illustrated by the CARRÉ signal de-

fined in Dallard & Spedding (1993) and reproduced in Fig. A.5. The signal is

distributed over the four quadrants of the xy plane with two different wave

numbers and three orientations. We arbitrarily define the normalized length of

the signal in both directions as 256and scales corresponding to the two wave

numbers as 5 and 10. In this example, it is clear that averaging the modulus

at a given scale is completely futile, as it will not differentiate between wave

numbers corresponding to the same scale but different orientations.
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(a) (b)

Figure A.4: (a) A 2D spatial test signal composed of one wave num-
ber/length scale (b) Plane averaged modulus of the 2D Arc
wavelet transform.

The simultaneous availability of scale and space information in the cube of

data resulting from the application of the 2D CWT on the plane data is where

the power of a wavelet based analysis resides. To further illustrate this point

using the CARRÉ signal, Fig. A.6(a) shows a cut in the 3D cube of data at a

specific x, y location along the scale axis. It serves to identify the local scale of

resonance at one point on the x − y plane. The cut clearly shows that resonance

occurs at the expected scales in the quadrants designated as A and B in Fig. A.5.

Another way of interrogating the cube of data is to identify the locations where

certain scales dominate by making a cut at a specific scale and location along

one direction and plot the distribution of the modulus of the transform along

the other direction. Figure A.6(b) for example shows a cut at two different

scales at x = 50 as a function of y. It clearly shows that the modulus peaks over

the quadrant in which the specified scale exists and is nearly zero elsewhere.
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Figure A.5: CARRÉ test signal

(a) (b)

Figure A.6: CARRÉ test signal: (a) Modulus of the 2D Arc wavelet trans-
form at x = 50, y = 50, 180(b) Modulus of the 2D Arc wavelet
transform at x = 50 and a = 5, 10
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If the data under analysis has a clearly visible mean direction with small

deviations therefrom, Morlet2D offers better resolution capabilities than the

non-directional Arc wavelet. In the absence of a dominant mean direction, a

comprehensive search of resonance along multiple directions becomes a must.

As an example of the use of Morlet2D, we once again analyze the same signal

which we already analyzed using the Arc wavelet (Fig. A.4(a)). However, this

time, we use the Morlet2D wavelet. We assume that the wave number orienta-

tion (45◦ in this case) is not known and, accordingly, perform the CWT at var-

ious interrogation angles. Maximum resonance (see Fig. A.7(b)) occurs at the

the 45◦ interrogation angle which matches the orientation of the wave number.

Note that the transform has angular symmetry about the wavelet direction (ori-

entation of ~κ0) as evidenced by the identical distributions of the plane averaged

modulus at the (60◦, 30◦) and (75◦, 15◦) seen in Fig. A.7(b).

Interrogations at other angles (not shown) showed that the angular selectiv-

ity (the change in interrogation angle that causes significant differences in the

CWT’s modulus) of the transform is on the order of 5◦. As a result in situations

where the signal is composed of many component wave numbers aligned along

different unknown orientations and multiple interrogation angles are needed,

then angle increments of 5◦ seem to be optimum. A final subtle point about

Morlet2D is that the way it is defined (see equations 4.17, 4.18) is such that it

possesses reflectional symmetry and hence is unable to differentiate between

a wave number aligned at θ and θ + 180◦ ( where θ ∈ [0,±90◦]). In situations

where wave numbers at θ and θ + 180◦ exist in clearly isolated regions of the

xy plane then the signal can be analyzed by Morlet2D through alternately set-

ting the signal’s amplitude to zero over one region and interrogating the other.

Finally, when a wave field is composed of arbitrary wave numbers aligned at
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(a) (b)

Figure A.7: (a) A 2D spatial test signal composed of one wave number ori-
ented at 45◦ to the x axis. (b) Plane averaged modulus of the
Morlet2D wavelet transform at multiple interrogation angles

random orientations it becomes necessary to look for a statistical tool by which

one can find the prevailing mean direction, if any, and a measure for the stan-

dard deviations relative to it. The hope is that by the use of Morlet2D wavelet at

the prevailing mean direction one can capture the bulk of the energy of the sig-

nal and capitalize on its high resolution capabilities. Appendix B thus provides

the necessary background material on directional data statistics.
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APPENDIX B

DIRECTIONAL DATA STATISTICS

A separate branch of statistics that deal with directional data in such diverse

fields as computer vision, robotics, biology, and geology is now well devel-

oped. Some of the most widely used methods of analyzing circular data in

earth sciences are reviewed in the recent book by Trauth (2010).

The main problem which motivated the use of some of the concepts from di-

rectional/circular data analysis is the need to estimate the mean direction of a

sample of resonance angles “recorded” at multiple spatial locations and to esti-

mate a standard deviation from it. It turns out that a simple-minded arithmetic

average of a collection of angles can lead to a largely erroneous mean angle.

It can be simply explained on the basis of the wraparound at 360◦ or, simply

put, the fact that 0◦and 360◦ are identical angles. As an example consider the

problem of finding the mean angle of 6◦ and 354◦. It is clear that the arithmetic

average 180◦ is not the true mean and that the standard deviation with respect

to the mean is not 246◦.

The solution to the mean direction problem is to treat the individual directions

φi as the angle made by unit vectors with the horizontal and to use vector ad-

dition rules to sum them up and to finally divide by the number of directions

N. Mathematically, this is equivalent to calculating the mean of the cosines and

sines of each direction and to then obtain the mean angle φ by calculating the

inverse tangent that is

φ = tan−1 (xr/yr) , (B.1)
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where

xr =

N∑

i=1

sin(φi), (B.2)

and

yr =

N∑

i=1

cos(φi). (B.3)

The length of mean direction vector R is then

R =
(√

x2
r + y2

r

)

/N. (B.4)

The more concentrated the angles are around the mean direction the larger the

value of the mean direction vector (i.e. R → 1). Accordingly, one can define a

measure for the dispersion around the mean as (Trauth, 2010)

σo = 1− R, (B.5)

which is referred to as the “circular” variance.

The classic graphical representation of directional data is the rose diagram. A

rose diagram is a histogram for a collection of measured angles. Whereas in a

bar histogram, the heights of the bars are proportional to the frequency of the

data contained within predefined bins, the rose diagram consists of segments

of a circle with the radii of the sectors being proportional to the frequency of

the data within the individual bins. We use Matlab’s built-in Rose function

to calculate and display the rose diagram of directional data. The function

ROS E(T HET A,Nb) has two input arguments, namely the vector of measured

angles T HET A and the number of bins Nb. Matlab then divides the 360◦ into

Nb equally spaced bins, calculates the frequency of the data in each bin and

displays the rose diagram. As an example to illustrate the basic utility of the

circular statistics tools, we estimate a mean angle for the local resonance an-

gles obtained through multiple interrogations (φ ∈ [0 90◦] in 5◦ increments) of
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Figure B.1: Rose diagrams of resonance angles obtained at multiple span-
wise locations y/D on the right half xy plane at z/D = 1.5 for
the R5Fr4 simulation over 10< Nt < 50

the horizontal divergence field on a horizontal plane above the wake center

line every Nt = 1 during the period of strong wave activity (10 < Nt < 50 for

Re5kFr4 simulation at z/D = 1.5). Local resonance angles at multiple span-wise

locations covering the approximate area through which the wake expands hor-

izontally during its evolution (y/D ∈ [1.5 3] for Re5kFr4 simulation) are stored

in arrays and imported into an independent Matlab function that calculates

the circular statistics and plots the rose diagram. Due to the symmetry of the

wave radiation by the turbulent wake we only focus on one half plane. Dif-

ferences between the statistics obtained from the two half planes are typically

small (O(5◦)).
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At every snapshot (i.e. ∆Nt = 1), the local resonance angles along a given y/D

location are sampled every ∆x/D = 1 from the 3D cube of data resulting from

the application of the Morlet2D transform to the 2D plane data. Only those

resonance angles at x/D locations where the signal’s amplitude (not the trans-

form modulus) exceeds half the maximum global amplitude at the given y/D

location are retained. This procedure acts to remove local resonance associated

with weak wave packets. The mean directions of all resonance angles at the

various y/D locations were in the range [56◦ − 65◦] with typical resultant vector

magnitude R ∼ 0.97 and a circular variance σo ∼ 0.03. We finally calculate a

mean of the individual means obtained at the different y/D locations. In this

particular case φ ' 60◦. The concentration of the resonance angles around 60◦

is clearly seen in Fig. B.1.
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